
Succinct Non-Interactive Arguments via Linear Interactive Proofs

Nir Bitansky∗

Tel Aviv University
Alessandro Chiesa

MIT
Yuval Ishai†

Technion

Rafail Ostrovsky‡

UCLA
Omer Paneth§

Boston University

September 15, 2013

∗This research was done while visiting Boston University and IBM T. J. Watson Research Center. Supported by the Check Point
Institute for Information Security, an ISF grant 20006317, and the Fulbright program.
†Supported by the European Research Council as part of the ERC project CaC (grant 259426), ISF grant 1361/10, and BSF

grant 2008411. Research done in part while visiting UCLA and IBM T. J. Watson Research Center.
‡Department of Computer Science and Department of Mathematics, UCLA. Email: rafail@cs.ucla.edu. Research supported

in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF
grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is also
based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
§Supported by an NSF grant 1218461.

1

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying NP statements with lower complex-
ity than required for classical NP verification. Traditionally, the focus has been on minimizing the length
of such arguments; nowadays researchers have focused also on minimizing verification time, by drawing
motivation from the problem of delegating computation.

A common relaxation is a preprocessing SNARG, which allows the verifier to conduct an expensive
offline phase that is independent of the statement to be proven later. Recent constructions of preprocess-
ing SNARGs have achieved attractive features: they are publicly-verifiable, proofs consist of only O(1)
encrypted (or encoded) field elements, and verification is via arithmetic circuits of size linear in the NP
statement. Additionally, these constructions seem to have “escaped the hegemony” of probabilistically-
checkable proofs (PCPs) as a basic building block of succinct arguments.

We present a general methodology for the construction of preprocessing SNARGs, as well as resulting
concrete efficiency improvements. Our contribution is three-fold:

(1) We introduce and study a natural extension of the interactive proof model that considers algebraically-
bounded provers; this new setting is analogous to the common study of algebraically-bounded “adver-
saries” in other fields, such as pseudorandomness and randomness extraction. More concretely, in this
work we focus on linear (or affine) provers, and provide several constructions of (succinct two-message)
linear-interactive proofs (LIPs) for NP. Our constructions are based on general transformations applied
to both linear PCPs (LPCPs) and traditional “unstructured” PCPs.

(2) We give conceptually simple cryptographic transformations from LIPs to preprocessing SNARGs,
whose security can be based on different forms of linear targeted malleability (implied by previous
knowledge assumptions). Our transformations convert arbitrary (two-message) LIPs into designated-
verifier SNARGs, and LIPs with degree-bounded verifiers into publicly-verifiable SNARGs. We also
extend our methodology to obtain zero-knowledge LIPs and SNARGs. Our techniques yield SNARGs
of knowledge and thus can benefit from known recursive composition and bootstrapping techniques.

(3) Following this methodology, we exhibit several constructions achieving new efficiency features, such
as “single-ciphertext preprocessing SNARGs” and improved succinctness-soundness tradeoffs. We also
offer a new perspective on existing constructions of preprocessing SNARGs, revealing a direct connec-
tion of these to LPCPs and LIPs.

Keywords: interactive proofs, probabilistically-checkable proofs, succinct arguments, homomorphic
encryption, zero-knowledge

2

Contents

1 Introduction 4
1.1 Background . 4
1.2 Motivation . 5
1.3 Our Results . 6
1.4 Structured PCPs In Other Works . 12
1.5 Organization . 14

2 Definitions of LIPs and LPCPs 14
2.1 Polynomials, Degrees, and Schwartz–Zippel . 14
2.2 Linear PCPs . 14
2.3 Linear Interactive Proofs . 16

3 Constructions of LIPs 17
3.1 LIPs From LPCPs . 17
3.2 LIPs From (Traditional) PCPs . 19

4 Definitions of SNARKs and Preprocessing SNARKs 21
4.1 Preprocessing SNARKs for Boolean Circuit Satisfaction Problems 24

5 Linear-Only Encryption and Encodings 26
5.1 Linear-Only Encryption . 26
5.2 Linear-Only One-Way Encoding . 30
5.3 Instantiations . 33

6 Preprocessing SNARKs from LIPs 35
6.1 Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs 35
6.2 Publicly-Verifiable Preprocessing SNARKs from Algebraic LIPs 37
6.3 Resulting Preprocessing SNARKs . 38

Acknowledgements 39

A Two LPCPs For Boolean Circuit Satisfaction Problems 40
A.1 An LPCP From The Hadamard Code . 40
A.2 An LPCP From Quadratic Span Programs . 42

B HVZK For LPCPs With Low-Degree Decision Algorithm 44

C Multi-Theorem Designated-Verifier SNARKs via Strong Knowledge 51

References 56

3

1 Introduction

Interactive proofs [GMR89] are central to modern cryptography and complexity theory. One extensively
studied aspect of interactive proofs is their expressibility, culminating with the result IP = PSPACE [Sha92].
Another aspect, which is the focus of this work, is that proofs for NP statements can potentially be much
shorter than an NP witness and be verified much faster than the time required for checking the NP witness.

1.1 Background

Succinct interactive arguments. In interactive proofs for NP with statistical soundness, significant savings
in communication (let alone verification time) are unlikely [BHZ87, GH98, GVW02, Wee05]. If we settle
for proof systems with computational soundness, known as argument systems [BCC88], then significant
savings can be made. Using collision-resistant hashes (CRHs) and probabilistically-checkable proofs (PCPs)
[BFLS91], Kilian [Kil92] showed a four-message interactive argument for NP where, to prove membership
of an instance x in a given NP language L with NP machine ML, communication and verification time are
bounded by poly(λ+ |ML|+ |x|+ log t), and the prover’s running time is poly(λ+ |ML|+ |x|+ t). Here,
t is the classical NP verification time of ML for the instance x, λ is a security parameter, and poly is a
universal polynomial (independent of λ, ML, x, and t). We call such argument systems succinct.

Proof of knowledge. A natural strengthening of computational soundness is (computational) proof of knowl-
edge: it requires that, whenever the verifier is convinced by an efficient prover, not only can we conclude
that a valid witness for the theorem exists, but also that such a witness can be extracted efficiently from the
prover. This property is satisfied by most proof system constructions, including the aforementioned one of
Kilian [BG08], and is useful in many applications of succinct arguments.

Removing interaction. Kilian’s protocol requires four messages. A challenge, which is of both theoretical
and practical interest, is the construction of non-interactive succinct arguments. As a first step in this di-
rection, Micali [Mic00] showed how to construct publicly-verifiable one-message succinct non-interactive
arguments for NP, in the random oracle model, by applying the Fiat-Shamir heuristic [FS87] to Kilian’s
protocol. In the plain model, one-message solutions are impossible for hard-enough languages (against
non-uniform provers), so one usually considers the weaker goal of two-message succinct arguments where
the verifier message is generated independently of the statement to be proven. Following [GW11], we call
such arguments SNARGs. More precisely, a SNARG for a language L is a triple of algorithms (G,P, V)
where: the generator G, given the security parameter λ, samples a reference string σ and a corresponding
verification state τ (G can be thought to be run during an offline phase, by the verifier, or by someone the
verifier trusts); the (honest) prover P (σ, x, w) produces a proof π for the statement “x ∈ L” given a witness
w; then, V (τ, x, π) verifies the validity of π. Soundness should hold even if x is chosen depending on σ.

Gentry and Wichs [GW11] showed that no SNARG can be proven secure via a black-box reduction to
a falsifiable assumption [Nao03]; this may justify using non-standard assumptions to construct SNARGs.
(Note that [GW11] rule out SNARGs only for (hard-enough) NP languages. For the weaker goal of verifying
deterministic polynomial-time computations in various models, there are beautiful constructions relying on
standard assumptions, such as [GKR08, KR09, AIK10, CKV10, GGP10, BGV11, CRR11, CTY11, CMT12,
FG12]. We focus on verifying nondeterministic polynomial-time computations.)

Extending earlier works [ABOR00, DLN+04, Mie08, DCL08], several works showed how to remove
interaction in Kilian’s PCP-based protocol and obtain SNARGs of knowledge (SNARKs) using extractable
collision-resistant hashing [BCCT12, DFH12, GLR11], or construct MIP-based SNARKs using fully-homomorphic
encryption with an extractable homomorphism property [BC12].

4

The preprocessing model. A notion that is weaker than a SNARK is that of a preprocessing SNARK: here,
the verifier is allowed to conduct an expensive offline phase. More precisely, the generator G takes as an
additional input a time bound T , may run in time poly(λ+ T) (rather than poly(λ+ log T)), and generates
σ and τ that can be used, respectively, to prove and verify correctness of computations of length at most T .
Bitansky et al. [BCCT13] showed that SNARKs can always be “algorithmically improved”; in particular,
preprocessing SNARKs imply ones without preprocessing. (The result of [BCCT13] crucially relies on the
fast verification time and the adaptive proof-of-knowledge property of the SNARK.) Thus, “preprocessing
can always be removed” at the expense of only a poly(λ)-loss in verification efficiency.

1.2 Motivation

The typical approach to construct succinct arguments (or, more generally, other forms of proof systems
with nontrivial efficiency properties) conforms with the following methodology: first, give an information-
theoretic construction, using some form of probabilistic checking to verify computations, in a model that en-
forces certain restrictions on provers (e.g., the PCP model [Kil92, Mic00, BG08, DCL08, BCCT12, DFH12,
GLR11] or other models of probabilistic checking [IKO07, KR08, SBW11, SMBW12, SVP+12, BC12,
SBV+12]); next, use cryptographic tools to compile the information-theoretic construction into an argu-
ment system (where there are no restrictions on the prover other than it being an efficient algorithm).

Existing constructions of preprocessing SNARKs seem to diverge from this methodology, while at the
same time offering several attractive features: such as public verification, proofs consisting of only O(1)
encrypted (or encoded) field elements, and verification via arithmetic circuits that are linear in the statement.

Groth [Gro10] and Lipmaa [Lip12] (who builds on Groth’s approach) introduced clever techniques for
constructing preprocessing SNARKs by leveraging knowledge-of-exponent assumptions [Dam92, HT98,
BP04a] in bilinear groups. At high level, Groth considered a simple reduction from circuit satisfaction
problems to an algebraic satisfaction problem of quadratic equations, and then constructed a set of specific
cryptographic tools to succinctly check satisfiability of this problem. Gennaro et al. [GGPR13] made a
first step to better separate the “information-theoretic ingredient” from the “cryptographic ingredient” in
preprocessing SNARKs. They formulated a new type of algebraic satisfaction problems, called Quadratic
Span Programs (QSPs), which are expressive enough to allow for much simpler, and more efficient, cryp-
tographic checking, essentially under the same assumptions used by Groth. In particular, they invested
significant effort in obtaining an efficient reduction from circuit satisfiability to QSPs.

Comparing the latter to the probabilistic-checking-based approach described above, we note that a re-
duction to an algebraic satisfaction problem is a typical first step, because such satisfaction problems tend
to be more amenable to probabilistic checking. As explained above, cryptographic tools are then usually
invoked to enforce the relevant probabilistic-checking model (e.g., the PCP one). The aforementioned works
[Gro10, Lip12, GGPR13], on the other hand, seem to somehow skip the probabilistic-checking step, and di-
rectly construct specific cryptographic tools for checking satisfiability of the algebraic problem itself. While
this discrepancy may not be a problem per se, we believe that understanding it and formulating a clear
methodology for the construction of preprocessing SNARKs are problems of great interest. Furthermore,
a clear methodology may lead not only to a deeper conceptual understanding, but also to concrete im-
provements to different features of SNARKs (e.g., communication complexity, verifier complexity, prover
complexity, and so on). Thus, we ask:

Is there a general methodology for the construction of preprocessing SNARKs?
Which improvements can it lead to?

5

1.3 Our Results

We present a general methodology for the construction of preprocessing SNARKs, as well as resulting
concrete improvements. Our contribution is three-fold:

• We introduce a natural extension of the interactive proof model that considers algebraically-bounded
provers. Concretely, we focus on linear interactive proofs (LIPs), where both honest and malicious
provers are restricted to computing linear (or affine) functions of messages they receive over some
finite field or ring. We then provide several (unconditional) constructions of succinct two-message
LIPs for NP, obtained by applying simple and general transformations to two variants of PCPs.

• We give cryptographic transformations from (succinct two-message) LIPs to preprocessing SNARKs,
based on different forms of linear targeted malleability, which can be instantiated based on existing
knowledge assumptions. Our transformation is very intuitive: to force a prover to “act linearly” on the
verifier message, simply encrypt (or encode) each field or ring element in the verifier message with
an encryption scheme that only allows linear homomorphism.

• Following this methodology, we obtain several constructions that exhibit new efficiency features.
These include “single-ciphertext preprocessing SNARKs” and improved succinctness-soundness trade-
offs. We also offer a new perspective on existing constructions of preprocessing SNARKs: namely,
although existing constructions do not explicitly invoke PCPs, they can be reinterpreted as using linear
PCPs, i.e., PCPs in which proof oracles (even malicious ones) are restricted to be a linear functions.1

We now discuss our results further, starting in Section 1.3.1 with the information-theoretic constructions
of LIPs, followed in Section 1.3.2 by the cryptographic transformations to preprocessing SNARKs, and
concluding in Section 1.3.3 with the new features we are able to obtain.

1-round linear IP

1-round linear IP
w/ algebraic verifier

publicly-verifiable
preprocessing SNARK

+
linear-only
encryption

+
linear-only

one-way encoding

CRYPTOGRAPHIC
COMPILERS

linear PCP

linear PCP
w/ algebraic verifier

INFORMATION-THEORETIC
COMPILERS

designated-verifier
preprocessing SNARK

(traditional) PCP

Figure 1: High-level summary of our transformations.

1.3.1 Linear interactive proofs.

The LIP model modifies the traditional interactive proofs model in a way analogous to the way the common
study of algebraically-bounded “adversaries” modifies other settings, such as pseudorandomness [NN90,
BV07] and randomness extraction [GR05, DGW09]. In the LIP model both honest and malicious provers
are restricted to apply linear (or affine) functions over a finite field F to messages they receive from the

1A stronger notion of linear PCP has been used in other works [IKO07, SBW11, SMBW12, SVP+12, SBV+12] to obtain
arguments for NP with nontrivial efficiency properties. See Section 1.4 for a comparison.

6

verifier. (The notion can be naturally generalized to apply over rings.) The choice of these linear functions
can depend on auxiliary input to the prover (e.g., a witness), but not on the verifier’s messages.

With the goal of non-interactive succinct verification in mind, we restrict our attention to (input-oblivious)
two-message LIPs for boolean circuit satisfiability problems with the following template. To verify the re-
lation RC = {(x,w) : C(x,w) = 1} where C is a boolean circuit, the LIP verifier VLIP sends to the LIP
prover PLIP a message q that is a vector of field elements, depending on C but not on x; VLIP may also output
a verification state u. The LIP prover PLIP(x,w) applies to q an affine transformation Π = (Π′, b), resulting
in only a constant number of field elements. The prover’s message a = Π′ · q + b can then be quickly
verified (e.g., with O(|x|) field operations) by VLIP, and the soundness error is at most O(1/|F|). From here
on, we shall use the term LIP to refer to LIPs that adhere to the above template.

LIP complexity measures. Our constructions provide different tradeoffs among several complexity mea-
sures of an LIP, which ultimately affect the features of the resulting preprocessing SNARKs. The two most
basic complexity measures are the number of field elements sent by the verifier and the number of those sent
by the prover. An additional measure that we consider in this work is the algebraic complexity of the verifier
(when viewed as an F-arithmetic circuit). Specifically, splitting the verifier into a query algorithm QLIP and
a decision algorithm DLIP, we say that it has degree (dQ, dD) if QLIP can be computed by a vector of multi-
variate polynomials of total degree dQ each in the verifier’s randomness, andDLIP by a vector of multivariate
polynomials of total degree dD each in the LIP answers a and the verification state u. Finally, of course, the
running times of the query algorithm, decision algorithm, and prover algorithm are all complexity measures
of interest. See Section 2.3 for a definition of LIPs and their complexity measures.

As mentioned above, our LIP constructions are obtained by applying general transformations to two types of
PCPs. We now describe each of these transformations and the features they achieve. Some of the parameters
of the resulting constructions are summarized in Table 1.

LIPs from linear PCPs. A linear PCP (LPCP) of length m is an oracle computing a linear function
π : Fm → F; namely, the answer to each oracle query qi ∈ Fm is ai = 〈π, qi〉. Note that, unlike in an LIP
where different affine functions, given by a matrix Π and shift b, are applied to a message q, in an LPCP
there is one linear function π, which is applied to different queries. (An LPCP with a single query can be
viewed as a special case of an LIP.) This difference prevents a direct use of an LPCP as an LIP.

Our first transformation converts any (multi-query) LPCP into an LIP with closely related parame-
ters. Concretely, we transform any k-query LPCP of length m over F into an LIP with verifier message
in F(k+1)m, prover message in Fk+1, and the same soundness error up to an additive term of 1/|F|. The
transformation preserves the key properties of the LPCP, including the algebraic complexity of the verifier.
Our transformation is quite natural: the verifier sends q = (q1, . . . , qk+1) where q1, . . . , qk are the LPCP
queries and qk+1 = α1q1 + . . . + αkqk is a random linear combination of these. The (honest) prover
responds with ai = 〈π, qi〉, for i = 1, . . . , k + 1. To prevent a malicious prover from using inconsistent
choices for π, the verifier checks that ak+1 = α1a1 + . . .+ αkak.

By relying on two different LPCP instantiations, we obtain two corresponding LIP constructions:

• A variant of the Hadamard-based PCP of Arora et al. [ALM+98a] (ALMSS), extended to work over
an arbitrary finite field F, yields a very simple LPCP with three queries. After applying our transfor-
mation, for a circuit C of size s and input length n, the resulting LIP for RC has verifier message in
FO(s2), prover message in F4, and soundness error O(1/|F|). When viewed as F-arithmetic circuits,
the prover PLIP and query algorithm QLIP are both of size O(s2), and the decision algorithm is of size
O(n). Furthermore, the degree of (QLIP, DLIP) is (2, 2).

• A (strong) quadratic span program (QSP), as defined by Gennaro et al. [GGPR13], directly yields a

7

corresponding LPCP with three queries. For a circuit C of size s and input length n, the resulting LIP
for RC has verifier message in FO(s), prover message in F4, and soundness error O(s/|F|). When
viewed as F-arithmetic circuits, the prover PLIP is of size Õ(s), the query algorithm QLIP is of size
O(s), and the decision algorithm is of size O(n). The degree of (QLIP, DLIP) is (O(s), 2).

A notable feature of the LIPs obtained above is the very low “online complexity” of verification: in both
cases, the decision algorithm is an arithmetic circuit of sizeO(n). Moreover, all the efficiency features men-
tioned above apply not only to satisfiability of boolean circuits C, but also to satisfiability of F-arithmetic
circuits.

In both the above constructions, the circuit to be verified is first represented as an appropriate algebraic
satisfaction problem, and then probabilistic checking machinery is invoked. In the first case, the problem is a
system of quadratic equations over F, and, in the second case, it is a (strong) quadratic span program (QSP)
over F. These algebraic problems are the very same problems underlying [Gro10, Lip12] and [GGPR13].

As explained earlier, [GGPR13] invested much effort to show an efficient reduction from circuit satis-
fiability problems to QSPs. Our work does not subsume nor simplify the reduction to QSPs of [GGPR13],
but instead reveals a simple LPCP to check a QSP, and this LPCP can be plugged into our general trans-
formations. Reducing circuit satisfiability to a system of quadratic equations over F is much simpler, but
generating proofs for the resulting problem is quadratically more expensive. (Concretely, both [Gro10] and
[Lip12] require O(s2) computation already in the preprocessing phase). See Section 3.1 for more details.

LIPs from traditional PCPs. Our second transformation relies on traditional “unstructured” PCPs. These
PCPs are typically more difficult to construct than LPCPs; however, our second transformation has the
advantage of requiring the prover to send only a single field element. Concretely, our transformation converts
a traditional k-query PCP into a 1-query LPCP, over a sufficiently large field. Here the PCP oracle is
represented via its truth table, which is assumed to be a binary string of polynomial size (unlike the LPCPs
mentioned above, whose truth tables have size that is exponential in the circuit size). The transformation
converts any k-query PCP of proof length m and soundness error ε into an LIP, with soundness error O(ε)
over a field of size 2O(k)/ε, in which the verifier sends m field elements and receives only a single field
element in return. The high-level idea is to use a sparse linear combination of the PCP entries to pack the k
answer bits into a single field element. The choice of this linear combination uses additional random noise
to ensure that the prover’s coefficients are restricted to binary values, and uses easy instances of subset-sum
to enable an efficient decoding of the k answer bits.

Taking time complexity to an extreme, we can apply this transformation to the PCPs of Ben-Sasson et
al. [BSCGT13b] and get LIPs where the prover and verifier complexity are both optimal up to polylog(s)
factors, but where the prover sends a single element in a field of size |F| = 2λ·polylog(s). Taking succinct-
ness to an extreme, we can apply our transformation to PCPs with soundness error 2−λ and O(λ) queries,
obtaining an LIP with similar soundness error in which the prover sends a single element in a field of size
|F| = 2λ·O(1). For instance, using the query-efficient PCPs of Håstad and Khot [HK05], the field size is only
|F| = 2λ·(3+o(1)).2 (Jumping ahead, this means that a field element can be encrypted using a single, normal-
size ciphertext of homomorphic encryption schemes such as Paillier or Elgamal even when λ = 100.) On
the down side, the degrees of the LIP verifiers obtained via this transformation are high; we give evidence
that this is inherent when starting from “unstructured” PCPs. See Section 3.2 for more details.

Honest-verifier zero-knowledge LIPs. We also show how to make the above LIPs zero-knowledge against
honest verifiers (HVZK). Looking ahead, using HVZK LIPs in our cryptographic transformations results in

2In the case of [HK05], we do not obtain an input-oblivious LIP, because the queries in their PCP depend on the input. While it
is plausible to conjecture that the queries can be made input-oblivious, we did not check that.

8

preprocessing SNARKs that are zero-knowledge (against malicious verifiers in the CRS model).
For the Hadamard-based LIP, an HVZK variant can be obtained directly with essentially no additional

cost. More generally, we show how to transform any LPCP where the decision algorithm is of low degree
to an HVZK LPCP with the same parameters up to constant factors (see Appendix B); this HVZK LPCP
can then be plugged into our first transformation to obtain an HVZK LIP. Both of the LPCP constructions
mentioned earlier satisfy the requisite degree constraints.

For the second transformation, which applies to traditional PCPs (whose verifiers, as discussed above,
must have high degree and thus cannot benefit from our general HVZK transformation), we show that if
the PCP is HVZK (see [DFK+92] for efficient constructions), then so is the resulting LIP; in particular, the
HVZK LIP answer still consists of a single field element.

Proof of knowledge. In each of the above transformations, we ensure not only soundness for the LIP, but
also a proof of knowledge property. Namely, it is possible to efficiently extract from a convincing affine
function Π a witness for the underlying statement. The proof of knowledge property is then preserved in the
subsequent cryptographic compilations, ultimately allowing to establish the proof of knowledge property for
the preprocessing SNARK. As discussed in Section 1.1, proof of knowledge is a very desirable property for
preprocessing SNARKs; for instance, it enables to remove the preprocessing phase, as well as to improve
the complexity of the prover and verifier, via the result of [BCCT13].

Thm. starting point of # field elements in # field elements in algebraic properties field size for 2−λ

number LIP construction verifier message prover message of verifier knowledge error

3.3 Hadamard PCP O(s2) 4 (dQ, dD) = (2, 2) 2λ ·O(1)

3.4 QSPs of [GGPR13] O(s) 4 (dQ, dD) = (O(s), 2) 2λ ·O(s)

3.9 PCPs of [BSCGT13b] Õ(s) 1 none 2λ·polylog(s)

3.10 PCPs of [HK05] poly(s) 1 none 2λ·(3+o(1))

Table 1: Summary of our LIP constructions. See each theorem for more details, in-
cluding the running times of the prover, query, and decision algorithms.

1.3.2 Preprocessing SNARKs from LIPs.

We explain how to use cryptographic tools to transform an LIP into a corresponding preprocessing SNARK.
At high level, the challenge is to ensure that an arbitrary (yet computationally-bounded) prover behaves as
if it was a linear (or affine) function. The idea, which also implicitly appears in previous constructions, is
to use an encryption scheme with targeted malleability [BSW12] for the class of affine functions: namely,
an encryption scheme that “only allows affine homomorphic operations” on an encrypted plaintext (and
these operations are independent of the underlying plaintexts). Intuitively, the verifier would simply encrypt
each field element in the LIP message q, send the resulting ciphertexts to the prover, and have the prover
homomorphically evaluate the LIP affine function on the ciphertexts; targeted malleability ensures that
malicious provers can only invoke (malicious) affine strategies.

We concretize the above approach in several ways, depending on the properties of the LIP and the exact
flavor of targeted malleability; different choices will induce different properties for the resulting preprocess-
ing SNARK. In particular, we identify natural sufficient properties that enable an LIP to be compiled into a
publicly-verifiable SNARK. We also discuss possible instantiations of the cryptographic tools, based on ex-
isting knowledge assumptions. (Recall that, in light of the negative result of [GW11], the use of nonstandard

9

cryptographic assumptions seems to be justified.)

Designated-verifier preprocessing SNARKs from arbitrary LIPs. First, we show that any LIP can be
compiled into a corresponding designated-verifier preprocessing SNARK with similar parameters. (Re-
call that “designated verifier” means that the verifier needs to maintain a secret verification state.) To
do so, we rely on what we call linear-only encryption: an additively homomorphic encryption that is (a)
semantically-secure, and (b) linear-only. The linear-only property essentially says that, given a public key
pk and ciphertexts Encpk(a1), . . . ,Encpk(am), it is infeasible to compute a new ciphertext c′ in the image of
Encpk, except by “knowing” β, α1, . . . , αm such that c′ ∈ Encpk(β +

∑m
i=1 αiai). Formally, the property is

captured by guaranteeing that, whenever A(pk,Encpk(a1), . . . ,Encpk(am)) produces valid ciphertexts (c′1,
. . . , c′k), an efficient extractor E (non-uniformly depending on A) can extract a corresponding affine func-
tion Π “explaining” the ciphertexts. As a candidate for such an encryption scheme, we propose variants of
Paillier encryption [Pai99] (as also considered in [GGPR13]) and of Elgamal encryption [EG85] (in those
cases where the plaintext is guaranteed to belong to a polynomial-size set, so that decryption can be done
efficiently). These variants are “sparsified” versions of their standard counterparts; concretely, a ciphertext
does not only include Encpk(a), but also Encpk(α ·a), for a secret field element α. (This “sparsification” fol-
lows a pattern found in many constructions conjectured to satisfy “knowledge-of-exponent” assumptions.)
As for Paillier encryption, we have to consider LIPs over the ring Zpq (instead of a finite field F); essentially,
the same results also hold in this setting (except that soundness is O(1/min {p, q}) instead of O(1/|F|)).

We also consider a notion of targeted malleability, weaker than linear-only encryption, that is closer to
the definition template of Boneh et al. [BSW12]. In such a notion, the extractor is replaced by a simula-
tor. Relying on this weaker variant, we are only able to prove the security of our preprocessing SNARKs
against non-adaptive choices of statements (and still prove soundness, though not proof of knowledge, if
the simulator is allowed to be inefficient). Nonetheless, for natural instantiations, even adaptive security
seems likely to hold for our construction, but we do not know how to prove it. One advantage of working
with this weaker variant is that it seems to allow for more efficient candidates constructions. Concretely, the
linear-only property rules out any encryption scheme where ciphertexts can be sampled obliviously; instead,
the weaker notion does not, and thus allows for shorter ciphertexts. For example, we can consider a standard
(“non-sparsified”) version of Paillier encryption. We will get back to this point in Section 1.3.3.

For further details on the above transformations, see Section 6.1.

Publicly-verifiable preprocessing SNARKs from LIPs with low-degree verifiers. Next, we identify prop-
erties of LIPs that are sufficient for a transformation to publicly-verifiable preprocessing SNARKs. Note
that, if we aim for public verifiability, we cannot use semantically-secure encryption to encode the message
of the LIP verifier, because we need to “publicly test” (without decryption) certain properties of the plaintext
underlying the prover’s response. The idea, implicit in previous publicly-verifiable preprocessing SNARK
constructions, is to use linear-only encodings (rather than encryption) that do allow such public tests, while
still providing certain one-wayness properties. When using such encodings with an LIP, however, it must
be the case that the public tests support evaluating the decision algorithm of the LIP and, moreover, the LIP
remains secure despite some “leakage” on the queries. We show that LIPs with low-degree verifiers (which
we call algebraic LIPs), combined with appropriate one-way encodings, suffice for this purpose.

More concretely, like [Gro10, Lip12, GGPR13], we consider candidate encodings in bilinear groups
under similar knowledge-of-exponent and computational Diffie-Hellman assumptions; for such encoding
instantiations, we must start with an LIP where the degree dD of the decision algorithm DLIP is at most
quadratic. (If we had multilinear maps supporting higher-degree polynomials, we could support higher
values of dD.) In addition to dD ≤ 2, to ensure security even in the presence of certain one-way leakage,
we need the query algorithm QLIP to be of polynomial degree.

10

Both of the LIP constructions from LPCPs described in Section 1.3.1 satisfy these requirements. When
combined with the above transformation, these LIP constructions imply new constructions of publicly-
verifiable preprocessing SNARKs, one of which can be seen as a simplification of the construction of
[Gro10] and the other as a reinterpretation (and slight simplification) of the construction of [GGPR13].

For more details, see Section 6.2.

Zero-knowledge. In all aforementioned transformations to preprocessing SNARKs, if we start with an
HVZK LIP (such as those mentioned in Section 1.3.1) and additionally require a rerandomization property
for the linear-only encryption/encoding (which is available in all of the candidate instantiations we consider),
we obtain preprocessing SNARKs that are (perfect) zero-knowledge in the CRS model. In addition, for the
case of publicly-verifiable (perfect) zero-knowledge preprocessing SNARKs, the CRS can be tested, so that
(similarly to previous works [Gro10, Lip12, GGPR13]) we also obtain succinct ZAPs. See Section 6.3.

1.3.3 New efficiency features for SNARKs.

We obtain the following concrete improvements in communication complexity for preprocessing SNARKs.

“Single-ciphertext preprocessing SNARKs”. If we combine the LIPs that we obtained from traditional
PCPs (where the prover returns only a single field element) with “non-sparsified” Paillier encryption, we
obtain (non-adaptive) preprocessing SNARKs that consist of a single Paillier cipherext. Moreover, when
using the query-efficient PCP from [HK05] as the underlying PCP, even a standard-size Paillier ciphertext
(with plaintext group Zpq where p, q are 512-bit primes) suffices for achieving soundness error 2−λ with
λ = 100. (For the case of [HK05], due to the queries’ dependence on the input, the reference string of the
SNARK also depends on the input.) Alternatively, using the sparsified version of Paillier encryption, we can
also get security against adaptively-chosen statements with only two Paillier ciphertexts.

Towards optimal succinctness. A fundamental question about succinct arguments is how low can we
push communication complexity. More accurately: what is the optimal tradeoff between communication
complexity and soundness? Ideally, we would want succinct arguments that are optimally succinct: to
achieve 2−Ω(λ) soundness against 2O(λ)-bounded provers, the proof length is O(λ) bits long.

In existing constructions of succinct arguments, interactive or not, to provide 2−Ω(λ) soundness against
2O(λ)-bounded provers, the prover has to communicate ω(λ) bits to the verifier. Concretely, PCP-based
(and MIP-based) solutions require Ω(λ3) bits of communication. This also holds for known preprocessing
SNARKs, because previous work and the constructions discussed above are based on bilinear groups or
Paillier encryption, both of which suffer from subexponential-time attacks.

If we had a candidate for (linear-only) homomorphic encryption that did not suffer from subexponential-
time attacks, our approach could perhaps yield preprocessing SNARKs that are optimally succinct. The only
known such candidate is Elgamal encryption (say, in appropriate elliptic curve groups) [PQ12]. However,
the problem with using Elgamal decryption in our approach is that it requires, in general, to compute discrete
logarithms.

One way to overcome this problem is to ensure that honest proofs are always decrypted to a known
polynomial-size set. This can be done by taking the LIP to be over a field Fp of only polynomial size,
and ensuring that any honest proof π has small `1-norm ‖π‖1, so that in particular, the prover’s answer is
taken from a set of size at most ‖π‖1 · p. For example, in the two LPCP-based constructions described in
Section 1.3.1, this norm is O(s2) and O(s) respectively for a circuit of size s. This approach, however, has
two caveats: the soundness of the underlying LIP is only 1/poly(λ) and moreover, the verifier’s running
time is proportional to s, and not independent of it, as we usually require.

A very interesting related question that may lead to a solution circumventing the aforementioned caveats

11

is whether there exist LIPs where the decision algorithm has linear degree. With such an LIP, we would
be able to directly use Elgamal encryption because linear tests on the plaintexts can be carried out “in the
exponent”, without having to take discrete logarithms.

Finally, a rather generic approach for obtaining “almost-optimal succintness” is to use (linear-only) El-
gamal encryption in conjunction with any linear homomorphic encryption scheme (perhaps not having the
linear-only property) that is sufficiently secure. Concretely, the verifier sends his LIP message encrypted
under both encryption schemes, and then the prover homomorphically evaluates the affine function on both.
The additional ciphertext can be efficiently decrypted, and can assist in the decryption of the Elgamal ci-
phertext. For example, there are encryption schemes based on Ring-LWE [LPR10] that are conjectured to
have quasiexponential security; by using these in the approach we just discussed, we can obtain 2−Ω(λ)

soundness against 2O(λ)-bounded provers with Õ(λ) bits of communication.

Strong knowledge and reusability. Designated-verifier SNARKs typically suffer from a problem known
as the verifier rejection problem: security is compromised if the prover can learn the verifier’s responses to
multiple adaptively-chosen statements and proofs. For example, the PCP-based (or MIP-based) SNARKs
of [BCCT12, GLR11, DFH12, BC12] suffer from the verifier rejection problem because a prover can adap-
tively learn the encrypted PCP (or MIP) queries, by feeding different statements and proofs to the verifier
and learning his responses, and since the secrecy of these queries is crucial, security is lost.

Of course, one way to avoid the verifier rejection problem is to generate a new reference string for each
statement and proof. Indeed, this is an attractive solution for the aforementioned SNARKs because generat-
ing a new reference string is very cheap: it costs poly(λ). However, for a designated-verifier preprocessing
SNARK, generating a new reference string is not cheap at all, and being able to reuse the same reference
string across an unbounded number of adaptively-chosen statements and proofs is a very desirable property.

A property that is satisfied by all algebraic LIPs (including the LPCP-based LIPs discussed in Sec-
tion 1.3.1), which we call strong knowledge, is that such attacks are impossible. Specifically, for such LIPs,
every prover either makes the verifier accept with probability 1 or with probability less thanO(poly(λ)/|F|).
(In Appendix C, we also show that traditional “unstructured” PCPs cannot satisfy this property.) Given LIPs
with strong knowledge, it seems that designated-verifier SNARKs that have a reusable reference string can
be constructed. Formalizing the connection between strong knowledge and reusable reference string actually
requires notions of linear-only encryption that are somewhat more delicate than those we have considered
so far. See details in Appendix C for additional discussions.

1.4 Structured PCPs In Other Works

Ishai et al. [IKO07] proposed the idea of constructing argument systems with nontrivial efficiency properties
by using “structured” PCPs and cryptographic primitives with homomorphic properties, rather than (as in
previous approaches) “unstructured” polynomial-size PCPs and collision-resistant hashing. We have shown
how to apply this basic approach in order to obtain succinct non-interactive arguments with preprocessing.
We now compare our work to other works that have also followed the basic approach of [IKO07].

Strong vs. weak linear PCPs. Both in our work and in [IKO07], the notion of a “structured” PCP is taken
to be a linear PCP. However, the notion of a linear PCP used in our work does not coincide with the one
used in [IKO07]. Indeed there are two ways in which one can formalize the intuitive notion of a linear PCP.
Specifically:
• A strong linear PCP is a PCP in which the honest proof oracle is guaranteed to be a linear function,

and soundness is required to hold for all (including non-linear) proof oracles.

12

• A weak linear PCP is a PCP in which the honest proof oracle is guaranteed to be a linear function,
and soundness is required to hold only for linear proof oracles.

In particular, a weak linear PCP assumes an algebraically-bounded prover, while a strong linear PCP does
not. While Ishai et al. [IKO07] considered strong linear PCPs, in our work we are interested in studying
algebraically-bounded provers, and thus consider weak linear PCPs.

Arguments from strong linear PCPs. Ishai et al. [IKO07] constructed a four-message argument system
for NP in which the prover-to-verifier communication is short (i.e., an argument with a laconic prover
[GVW02]) by combining a strong linear PCP and (standard) linear homomorphic encryption; they also
showed how to extend their approach to “balance” the communication between the prover and verifier and
obtain a O(1/ε)-message argument system for NP with O(nε) communication complexity. Let us briefly
compare their work with ours.

First, in this paper we focus on the non-interactive setting, while Ishai et al. focused on the interactive
setting. In particular, in light of the negative result of Gentry and Wichs [GW11], this means that the use of
non-standard assumptions in our setting (such as linear targeted malleability) may be justified; in contrast,
Ishai et al. only relied on the standard semantic security of linear homomorphic encryption (and did not
rely on linear targeted malleability properties). Second, we focus on constructing (non-interactive) succinct
arguments, while Ishai et al. focus on constructing arguments with a laconic prover. Third, by relying
on weak linear PCPs (instead of strong linear PCPs) we do not need to perform (explicitly or implicitly)
linearity testing, while Ishai et al. do. Intuitively, this is because we rely on the assumption of linear targeted
malleability, which ensures that a prover is algebraically bounded (in fact, in our case, linear); not having
to perform proximity testing is crucial for preserving the algebraic properties of a linear PCP (and thus,
e.g., obtain public verifiability) and obtaining O(poly(λ)/|F|) soundness with only a constant number of
encrypted/encoded group elements. (Recall that linearity testing only guarantees constant soundness with a
constant number of queries.)

Turning to computational efficiency, while their basic protocol does not provide the verifier with any
saving in computation, Ishai et al. noted that their protocol actually yields a batching argument: namely, an
argument in which, in order to simultaneously verify the correct evaluation of ` circuits of size S, the verifier
may run in time S (i.e., in time S/` per circuit evaluation). In fact, a set of works [SBW11, SMBW12,
SVP+12, SBV+12] has improved upon, optimized, and implemented the batching argument of Ishai et al.
[IKO07] for the purpose of verifiable delegation of computation.

Finally, [SBV+12] have also observed that QSPs can be used to construct weak linear PCPs; while we
compile weak linear PCPs into LIPs, [SBV+12] (as in previous work) compile weak linear PCPs into strong
ones. Indeed, note that a weak linear PCP can always be compiled into a corresponding strong one, by
letting the verifier additionally perform linearity testing and self-correction; this compilation does not affect
proof length, increases query complexity by only a constant multiplicative factor, and guarantees constant
soundness.

Remark 1.1. The notions of (strong or linear) PCP discussed above should not be confused with the (unre-
lated) notion of a linear PCP of Proximity (linear PCPP) [BSHLM09, Mei12], which we now recall for the
purpose of comparison.

Given a field F, an F-linear circuit [Val77] is an F-arithmetic circuit C : Fh → F` in which every gate
computes an F-linear combination of its inputs; its kernel, denoted ker(C), is the set of allw ∈ Fh for which
C(w) = 0`. A linear PCPP for a field F is an oracle machine V with the following properties: (1) V takes
as input an F-linear circuit C and has oracle access to a vector w ∈ Fh and an auxiliary vector π of elements
in F, (2) if w ∈ ker(C) then there exists π so that V w,π(C) accepts with probability 1, and (3) if w is far
from ker(C) then V w,π(C) rejects with high probability for every π.

13

Thus, a linear PCPP is a proximity tester for the kernels of linear circuits (which are not universal), while
a (strong or weak) linear PCP is a PCP in which the proof oracle is a linear function.

1.5 Organization

In Section 2, we introduce the notions of LPCPs and LIPs. In Section 3, we present our transformations for
constructing LIPs from several notions of PCPs. In Section 4, we give the basic definitions for preprocessing
SNARKs. In Section 5, we define the relevant notions of linear targeted malleability, as well as candidate
constructions for these. In Section 6, we present our transformations from LIPs to preprocessing SNARKs.
In Appendix A, we discuss two constructions of algebraic LPCPs. In Appendix B, we present our general
transformation to obtain HVZK for LPCPs with low-degree decision algorithms. In Appendix C, we discuss
the notion of strong knowledge and its connection to designated-verifier SNARKs with a reusable reference
string.

2 Definitions of LIPs and LPCPs

We begin with the information-theoretic part of the paper, by introducing the basic definitions of LPCPs,
LIPs, and relevant conventions.

2.1 Polynomials, Degrees, and Schwartz–Zippel

Vectors are denoted in bold, while their coordinates are not; for example, we may write a to denote the
ordered tuple (a1, . . . , an) for some n. A field is denoted F; we always work with fields that are finite.
We say that a multivariate polynomial f : Fm → F has degree d if the total degree of f is at most d.
A multivalued multivariate polynomial f : Fm → Fµ is a vector of polynomials (f1, . . . , fµ) where each
fi : Fm → F is a (single-valued) multivariate polynomial.

A very useful fact about polynomials is the following:

Lemma 2.1 (Schwartz–Zippel). Let F be any field. For any nonzero polynomial f : Fm → F of total degree
d and any finite subset S of F,

Pr
s←Sm

[
f(s) = 0

]
≤ d

|S| .

In particular, any two distinct polynomials f, g : Fm → F of total degree d can agree on at most a d/|S|
fraction of the points in Sm.

2.2 Linear PCPs

A linear probabilistically-checkable proof (LPCP) system for a relation R over a field F is one where
the PCP oracle is restricted to compute a linear function π : Fm → F of the verifier’s queries. Viewed as a
traditional PCP, π has length |F|m (and alphabet F). For simplicity, we ignore the computational complexity
issues in the following definition, and refer to them later when they are needed.

Definition 2.2 (Linear PCP (LPCP)). LetR be a binary relation, F a finite field, PLPCP a deterministic prover
algorithm, and VLPCP a probabilistic oracle verifier algorithm. We say that the pair (PLPCP, VLPCP) is a (input-
oblivious) k-query linear PCP for R over F with knowledge error ε and query length m if it satisfies the
following requirements:

14

• Syntax. On any input x and oracle π, the verifier V πLPCP(x) makes k input-oblivious queries to π and
then decides whether to accept or reject. More precisely, VLPCP consists of a probabilistic query algo-
rithm QLPCP and a deterministic decision algorithm DLPCP working as follows. Based on its internal
randomness, and independently of x, QLPCP generates k queries q1, . . . , qk ∈ Fm to π and state
information u; then, given x, u, and the k oracle answers a1 = 〈π, q1〉 , . . . , ak = 〈π, qk〉, DLPCP

accepts or rejects.

• Completeness. For every (x,w) ∈ R, the output of PLPCP(x,w) is a description of a linear function
π : Fm → F such that V πLPCP(x) accepts with probability 1.

• Knowledge. There exists a knowledge extractorELPCP such that for every linear function π∗ : Fm → F
if the probability that V π

∗
LPCP(x) accepts is greater than ε thenEπ

∗
LPCP(x) outputs w such that (x,w) ∈ R.3

Furthermore, we say that (PLPCP, VLPCP) has degree (dQ, dD) if, additionally,

1. the query algorithm QLPCP is computed by a degree dQ arithmetic circuit (i.e., there are k polynomials
p1, . . . ,pk : Fµ → Fm and state polynomial p : Fµ → Fm′ , all of degree dQ, such that the LPCP
queries are q1 = p1(r), . . . , qk = pk(r) and the state is u = p(r) for a random r ∈ Fµ), and

2. the decision algorithm DLPCP is computed by a degree dD arithmetic circuit (i.e., for every input x there
is a test polynomial tx : Fm′+k → Fη of degree dD such that tx(u, a1, . . . , ak) = 0η if and only if
DLPCP(x,u, a1, . . . , ak) accepts);

Finally, for a security parameter λ, we say that (PLPCP, VLPCP) is an algebraic LPCP (for λ) if it has degree
(poly(λ),poly(λ)).

Remark 2.3 (infinite relationsR). WhenR is an infinite relation ∪`∈NR`, both VLPCP = (QLPCP, DLPCP) and
PLPCP also get as input 1`. In this case, all parameters k,m, µ,m′, η may also be a function of `.

Some of the aforementioned properties only relate to the LPCP verifier VLPCP, so we will also say things
like “VLPCP has degree...”, i.e., using the verifier as the subject (rather than the LPCP).

Honest-verifier zero-knowledge LPCPs. We also consider honest-verifier zero-knowledge (HVZK) LPCPs.
In an HVZK LPCP, soundness or knowledge is defined as in a usual LPCP, and HVZK is defined as in a
usual HVZK PCP. For convenience, let us recall the definition of a HVZK PCP:

Definition 2.4 (honest-verifier zero-knowledge PCP (HVZK PCP)). A PCP system (PPCP, VPCP) for a rela-
tion R, where PPCP is also probabilistic, is δ-statistical HVZK if there exists a simulator SPCP, running in
expected polynomial time, for which the following two ensembles are δ-close (δ can be a function of the
field, input length, and so on):{

SPCP(x)
}

(x,w)∈R and
{

View
(
V
πx,w
PCP (x)

)
| πx,w ← PPCP(x,w)

}
(x,w)∈R ,

where View represents the view of the verifier, including its coins and the induced answers according to π.
If the above two distributions are identically distributed then we say that (PPCP, VPCP) is perfect HVZK.

3In particular, (PLPCP, VLPCP) has soundness error ε: for every x such that (x,w) 6∈ R for all w, and for every linear function
π∗ : Fm → F, the probability that V π∗

LPCP(x) accepts is at most ε.

15

x

q1, . . . ,qk

a1, . . . , ak

u

r qi 2 Fm

ai = h⇡,qii 2 F

⇡ : Fm ! F

⇡

VLPCP

QLPCP

PLPCP

DLPCP

0 / 1

x

u

r

0 / 1
⇧

q1, . . . , qm

a1, . . . , ak

VLIPPLIP

QLIP

DLIP

⇧ : Fm ! Fk

qi 2 F
a = ⇧ · q 2 Fk

Figure 2: Diagram of an LPCP and an input-oblivious two-message LIP.

2.3 Linear Interactive Proofs

A linear interactive proof (LIP) is defined similarly to a standard interactive proof [GMR89], except that
each message sent by a prover (either an honest or a malicious one) must be a linear function of the previous
messages sent by the verifier. In fact, it will be convenient for our purposes to consider a slightly weaker
notion that allows a malicious prover to compute an affine function of the messages. While we will only
make use of two-message LIPs in which the verifier’s message is independent of its input, below we define
the more general notion.

Definition 2.5 (Linear Interactive Proof (LIP)). A linear interactive proof over a finite field F is defined
similarly to a standard interactive proof [GMR89], with the following differences.

• Each message exchanged between the prover PLIP and the verifier VLIP is a vector qi ∈ Fm over F.

• The honest prover’s strategy is linear in the sense that each of the prover’s messages is computed by
applying some linear function Πi : Fm → Fk to the verifier’s previous messages (q1, . . . ,qi). This
function is determined only by the input x, the witness w, and the round number i.

• Knowledge should only hold with respect to affine prover strategies Π∗ = (Π, b), where Π is a linear
function, and b is some affine shift.

Analogously to the case of LPCPs (Definition 2.2), we say that a two-message LIP is input-oblivious if
the verifier’s messages do not depend on the input x. In such a case the verifier can be split into a query
algorithm QLIP that outputs the query q and possibly a verification state u, and a decision algorithm DLIP

that takes as input u, x, and the LIP answer Π · q. We also consider notions of degree and algebraic LIPs,
also defined analogously to the LPCP case.

Remark 2.6 (LPCPs and LIPs over rings). The notions of LPCP and an LIP can be easily extended to be
over a ring rather than over a field. One case of particular interest is LIPs over ZN , where N is the product
of two primes p and q. (LIPs over ZN are needed, e.g., when used in conjunction with Paillier encryption;
see Section 5.3.) All of our results generalize, rather directly, to the case of ZN , where instead of achieving
soundness-error O(1/|F|), we achieve soundness O(1/min {p, q}). For simplicity, when presenting most
results, we shall restrict attention to fields.

Remark 2.7 (honest-verifier zero knowledge). We also consider an honest-verifier zero-knowledge variant
of LIPs (HVZK LIPs), which is defined analogously to Definition 2.4. In this case, the honest prover is
probabilistic.

16

Remark 2.8 (LIP vs. LPCP). Note that a one-query LPCP is an LIP where the prover returns a single field
element; however, when the prover returns more than one field element, an LIP is not a one-query LPCP. In
this paper we construct both LIPs where the prover returns more than a single field element (see Section 3.1)
and LIPs where the prover returns a single field element (see Section 3.2).

3 Constructions of LIPs

We present two transformations for constructing LIPs, in Section 3.1, Section 3.2 respectively.

3.1 LIPs From LPCPs

We show how to transform any LPCP into a two-message LIP with similar parameters. Crucially, our
transformation does not significantly affect strong knowledge or algebraic properties of the LPCP verifier.
Note that a non-trivial transformation is indeed required in general because the LIP verifier cannot simply
send to the LIP prover the queries q1, . . . , qk generated by the LPCP verifier. Unlike in the LPCP model,
there is no guarantee that the LIP prover will apply the same linear function to each of these queries; instead,
we only know that the LIP prover will apply some affine function Π to the concatenation of q1, . . . , qk. Thus,
we show how to transform any LPCP (PLPCP, VLPCP) with knowledge error ε into a two-message LIP (PLIP,
VLIP) with knowledge error at most ε + 1

|F| . If the LPCP has k queries of length m and is over a field F,
then the LIP verifier VLIP will send (k + 1)m field elements and receive (k + 1) field elements from the LIP
prover PLIP. The idea of the transformation is for VLIP to run VLPCP and then also perform a consistency test
(consisting of also sending to PLIP a random linear combination of the k queries of VLPCP and then verifying
the obvious condition on the received answers).

More precisely, we construct a two-message LIP (PLIP, VLIP) from an LPCP (PLPCP, VLPCP) as follows:

Construction 3.1. Let (PLPCP, VLPCP) be a k-query LPCP over F with query lengthm. Define a two-message
LIP (PLIP, VLIP) as follows.

• The LIP verifier VLIP runs the LPCP verifier VLPCP to obtain k queries q1, . . . , qk ∈ Fm, draws α1, . . . , αk
in F uniformly at random, and sends to the LIP prover PLIP the (k + 1)m field elements obtained by
concatenating the k queries q1, . . . , qk together with the additional query qk+1 :=

∑k
i=1 αiqi.

• The LIP prover PLIP runs the LPCP prover PLPCP to obtain a linear function π : Fm → F, parses the (k+
1)m received field elements as k+1 queries ofm field elements each, appliesπ to each of these queries to
obtain k+1 corresponding field elements a1, . . . , ak+1, and sends these answers to the LIP verifier VLIP.

• The LIP verifier VLIP checks that ak+1 =
∑k

i=1 αiai (if this is not the case, it rejects) and decides whether
to accept or reject by feeding the LPCP verifier VLPCP with the answers a1, . . . , ak.

Lemma 3.2 (from LPCP to LIP). Suppose (PLPCP, VLPCP) is a k-query LPCP for a relation R over F with
query length m and knowledge error ε. Then, (PLIP, VLIP) from Construction 3.1 is a two-message LIP forR
over F with verifier message in F(k+1)m, prover message in Fk+1, and knowledge error ε+ 1

|F| . Moreover,
• if (PLPCP, VLPCP) has strong knowledge, then (PLIP, VLIP) also does, and
• if (PLPCP, VLPCP) has an algebraic verifier of degree (dQ, dD), then (PLIP, VLIP) has one with degree (dQ,max{2, dD}).

Proof. Syntactic properties and completeness are easy to verify. Furthermore, since the construction of VLIP

from VLPCP only involves an additional quadratic test, the degree of VLIP is (dQ,max{2, dD}). We are left to
argue knowledge (and strong knowledge).

17

Let Π: F(k+1)m → Fk+1 be an affine strategy of a potentially malicious LIP prover P ∗LIP. We spec-
ify Π by (k + 1)2 linear functions πi,j : Fm → F for i, j ∈ {1, . . . , k + 1} and a constant vector γ =

(γ1, . . . , γk+1) ∈ Fk+1 such that the i-th answer of P ∗LIP is given by ai :=
∑k+1

j=1

〈
πi,j , qj

〉
+ γi. It suffices

to show that, for any choice of queries q1, . . . , qk, exactly one of the following conditions holds:

• ai = 〈πk+1,k+1, qi〉 for all i ∈ [k], or

• with probability greater than 1− 1
|F| over α1, . . . , αk, P ∗LIP does not pass the consistency check.

Indeed, the above tells us that if Π makes VLIP accept with probability greater than ε + 1
|F| , then πk+1,k+1

makes VPCP accept with probability greater than ε. Knowledge (and strong knowledge) thus follow as
claimed.

To show the above, fix a tuple of queries, and assume that, for some i∗ ∈ [k], ai∗ 6= 〈πk+1,k+1, qi∗〉.
For the consistency check to pass, it should hold that:

k∑
i=1

αi

k+1∑
j=1

〈
πi,j , qj

〉
+ γi

 =

k+1∑
j=1

〈
πk+1,j , qj

〉
+ γk+1 .

Equivalently,
k+1∑
j=1

k∑
i=1

αi
〈
πi,j , qj

〉
+

k∑
i=1

αiγi =
k+1∑
j=1

〈
πk+1,j , qj

〉
+ γk+1 .

Breaking the first summation using the equality qk+1 =
∑k

j=1 αjqj , we get:

k∑
j=1

k∑
i=1

αi
〈
πi,j , qj

〉
+

k∑
i=1

αi

〈
πi,k+1,

 k∑
j=1

αjqj

〉+

k∑
i=1

αiγi =

k∑
j=1

〈
πk+1,j , qj

〉
+

〈
πk+1,k+1,

k∑
j=1

αjqj

〉
+γk+1 .

Rearranging, we see that the consistency check reduces to verifying the following equation:

k∑
i,j=1

αiαj
〈
πi,k+1, qj

〉
+

k∑
i=1

αi

 k∑
j=1

〈
πi,j , qj

〉
− 〈πk+1,k+1, qi〉+ γi

−(k∑
i=1

〈πk+1,i, qi〉+ γk+1

)
= 0 .

Because
∑k+1

j=1

〈
πi∗,j , qj

〉
+ γi∗ = ai∗ 6= 〈πk+1,k+1, qi∗〉, the coefficient of αi∗ in the above polynomial is

non-zero. Hence, by the Schwartz–Zippel Lemma (see Lemma 2.1), the identity holds with probability at
most 1

|F| .

In light of the two LPCP constructions described in Appendix A, we deduce the following two theorems.

Theorem 3.3. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit of size s. There
is an input-oblivious two-message LIP for RC with knowledge error O(1/|F|), verifier message in FO(s2),
prover message in F4, and degree (2, 2). Furthermore:
• the LIP prover PLIP is an arithmetic circuit of size O(s2);
• the LIP query algorithm QLIP is an arithmetic circuit of size O(s2);
• the LIP decision algorithm DLIP is an arithmetic circuit of size O(n).

18

Theorem 3.4. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit of size s. There
is an input-oblivious two-message LIP for RC with knowledge error O(s/|F|), verifier message in FO(s),
prover message in F4, and degree (O(s), 2). Furthermore:
• the LIP prover PLIP is an arithmetic circuit of size Õ(s);
• the LIP query algorithm QLIP is an arithmetic circuit of size O(s);
• the LIP decision algorithm DLIP is an arithmetic circuit of size O(n).

3.1.1 Zero-knowledge.

The LIPs we obtain by via above transformation can all be made honest-verifier zero-knowledge (HVZK)
by starting with an HVZK LPCP. For this purpose, we show in Appendix B a general transformation from
any LPCP with dD = O(1) to a corresponding HVZK LPCP, with only small overhead in parameters.

3.2 LIPs From (Traditional) PCPs

We present a second general construction of LIPs. Instead of LPCPs, this time we rely on a traditional
k-query PCP in which the proof π is a binary string of lengthm = poly(|x|). While any PCP can be viewed
as an LPCP (by mapping each query location q ∈ [m] to the unit vector eq equal to 1 at the q-th position
and 0 everywhere else), applying the transformation from Section 3.1 yields an LIP in which the prover’s
message consists of k + 1 field elements. Here we rely on the sparseness of the queries of an LPCP that
is obtained from a PCP in order to reduce the number of field elements returned by the prover to 1. (In
particular, the transformation presented in this section does not apply to either of the LPCPs we construct
in Appendix A, because they do not have sparse queries.) The construction relies on the easiness of solving
instances of subset sum in which each integer is bigger than the sum of the previous integers (see [MH78]).

Fact 3.5. There is a quasilinear-time algorithm for the following problem:
• input: Non-negative integers w1, . . . , wk, a such that each wi is bigger than the sum of the previous wj .
• output: A binary vector (a1, . . . , ak) ∈ {0, 1}k such that a =

∑k
i=1 aiwi (if one exists).

(All integers are given in binary representation.)

The following construction uses a parameter ` that will affect the soundness error. We assume that the
field F is of a prime order p where p > 2k` and identify its elements with the integers 0, . . . , p− 1.

Construction 3.6. Let (PPCP, VPCP) be a k-query PCP with proof length m. Define an LIP (PLIP, VLIP) over
F as follows.

• The LIP verifier VLIP runs the PCP verifier VPCP to obtain k distinct query locations q1, . . . , qk ∈ [m],
picks a sequence of k random field elements

w1 ← [0, `− 1] , w2 ← [`, 2`− 1] , w3 ← [3`, 4`− 1] , . . . , wk ← [(2k−1 − 1)`, 2k−1`− 1] ,

and sends to the LIP prover PLIP the vector q =
∑k

i=1wieqi , where ej is the j-th unit vector in Fm.

• The LIP prover PLIP responds by applying to q the linear function π : Fm → F whose coefficients are
specified by the m bits of the PCP generated by the PCP prover PPCP. Let a denote the field element
returned by PLIP.

• The LIP verifier VLIP applies the subset sum algorithm of Fact 3.5 to find (a1, . . . , ak) ∈ {0, 1}k such
that a =

∑k
i=1 aiwi (if none exists it rejects) and decides whether to accept by feeding the PCP verifier

VPCP with a1, . . . , ak.

19

Lemma 3.7 (from PCP to LIP). Suppose (PPCP, VPCP) is a k-query PCP for a relationR with proof lengthm
and knowledge error ε, and F is a field of prime order p with p > 2k`. Then (PLIP, VLIP) from Construction 3.6
is a two-message LIP forR over F with verifier message in Fm, prover message in F, and knowledge error ε+ 2k

` .

Proof. Because the prover message is in F (i.e., the prover returns a single field element) the prover strategy
is an affine function Π∗ : Fm → F (i.e., as in an LPCP, see Remark (2.8)). Let π∗ : Fm → F be a linear
function and γ∗ ∈ F be a constant such that Π∗(q) = 〈π∗, q〉+ γ∗ for all q ∈ Fm.

We say that query positions q1, . . . , qk ∈ [m] are invalid with respect to Π∗ if γ∗ 6= 0 or there is
i ∈ {1, . . . , k} such that Π∗(eqi) 6∈ {0, 1}. It suffices to show that, for any strategy Π∗ as above, conditioned
on any choice of invalid query positions q1, . . . , qk by VLIP, the probability of VLIP accepting is bounded by
2k/`. Indeed, for queries for which Π∗ is valid, it holds that Π∗(qi) = 〈π∗, qi〉 ∈ {0, 1} corresponding a
traditional PCP oracle π∗, so that the knowledge guarantees of (PPCP, VPCP) would kick in.

The above follows from the sparseness of the answers a that correspond to valid strategies and the high
entropy of the answer resulting from any invalid strategy. Concretely, fix any candidate solution (a1, . . . ,
ak) ∈ {0, 1}k and pick w1, . . . , wk as in Construction 3.6. Since each wi is picked uniformly from an
interval of size `,

Pr
w1,...,wk

 Π∗ ·
(

k∑
i=1

wieqi

)>
=

k∑
i=1

aiwi

 = Pr
w1,...,wk

[〈
π∗,

k∑
i=1

wieqi

〉
+ γ∗ =

k∑
i=1

aiwi

]

= Pr
w1,...,wk

[
k∑
i=1

(π∗qi − ai)wi + γ∗ = 0

]

≤ 1

`
.

Indeed, noting that
∑k

i=1(π∗qi − ai)wi + γ∗ is a degree-1 polynomial in the variables w1, . . . , wk,

• if there is i ∈ {1, . . . , k} such that Π∗(eqi) 6∈ {0, 1} then the coefficient of wi is non-zero (since
ai ∈ {0, 1}) and thus, by the Schwartz–Zippel Lemma (see Lemma 2.1), the probability that the
polynomial vanishes is at most 1/`; and

• if instead for all i ∈ {1, . . . , k} it holds that Π∗(eqi) ∈ {0, 1} then it must be that γ∗ 6= 0; if there is
i ∈ {1, . . . , k} such that π∗qi 6= ai then the same argument as in the previous bullet holds; otherwise,
γ∗ = 0 with probability 0 since we know that γ∗ 6= 0.

By a union bound, the probability that there exists solution (a1, . . . , ak) ∈ {0, 1}k such that Π(
∑k

i=1wieqi) =∑k
i=1 aiwi is at most 2k/`. Hence, the subset sum algorithm will fail to find a solution and VLIP will reject

except with at most 2k/` probability.

By setting ` := 2k/ε, we obtain the following corollary:

Corollary 3.8. Suppose (PPCP, VPCP) is a k-query PCP for a relationR with proof length m and knowledge
error ε, and F is a field of prime order p with p > 22k/ε. Then (PLIP, VLIP) from Construction 3.6 is a
two-message LIP forR over F with verifier message in Fm, prover message in F, and knowledge error 2ε.

There are many PCPs in the literature (e.g., [BFLS91, FGL+96, AS98, ALM+98b, PS94, RS97, HS00,
BSSVW03, BSGH+04, BSGH+05, GS06, Din07, BSS08, MR08, Mei12]), optimizing various parameters.

20

Focusing on asysmptotic time complexity, perhaps the most relevant PCPs for our purposes here are
those of Ben-Sasson et al. [BSCGT13b]. They constructed PCPs where, to prove and verify that a random-
access machine M accepts (x,w) within t steps for some w with |w| ≤ t, the prover runs in time (|M | +
|x|+ t) · polylog(t) and the verifier runs in time (|M |+ |x|) · polylog(t) (while asking polylog(t) queries,
for constant soundness). Invoking Corollary 3.8 with these PCPs, one can deduce the following theorem.

Theorem 3.9. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit of size s. There
is an input-oblivious two-message LIP for RC with knowledge error 2−λ, verifier message in FÕ(s), prover
message in F, and |F| > 2λ·polylog(s). Furthermore:
• the LIP prover PLIP runs in time Õ(s);
• the LIP query algorithm QLIP runs in time Õ(s) + λ · n · polylog(s);
• the LIP decision algorithm DLIP runs in time λ · n · polylog(s).

(All the above running times are up to polylog(|F|) factors.)

Focusing on communication complexity instead, we can invoke Corollary 3.8 with the query-efficient
PCPs of Håstad and Khot [HK05], which have λ+o(λ) queries for soundness 2−λ. (Because their PCPs have
a query algorithm that depends on the input, we only obtain an LIP where the verifier’s message depends on
the input; it is plausible that [HK05] can be modified to be input oblivious, but we did not check this.)

Theorem 3.10. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit of size s. There
is a two-message LIP for RC with knowledge error 2−λ, verifier message in Fpoly(s), prover message in F,
and |F| > 2λ·(3+o(1)). Furthermore:
• the LIP prover PLIP runs in time poly(s);
• the LIP query algorithm QLIP runs in time poly(s) + λ · n · polylog(s);
• the LIP decision algorithm DLIP runs in time λ · n · polylog(s).

(All the above running times are up to polylog(|F|) factors.)

The verifiers of the PCPs of Ben-Sasson et al. [BSCGT13b] (used to derive Theorem 3.9) and of Håstad
and Khot [HK05] (used to derive Theorem 3.10) do not have low degree, and thus the LIPs they induce
via our transformation are not algebraic. In Appendix C, we give evidence that this is inherent, because we
prove that no PCP (for a hard enough language) can have low-degree verifiers (or even satisfy a weaker, but
still useful, property that we call “strong knowledge”).

3.2.1 Zero-knowledge.

In Section 3.1.1 we discussed a generic transformation from any LPCP with dD = O(1) to a corresponding
HVZK LPCP. A (traditional) PCP does not typically induce an LPCP with dD = O(1). Thus, if we want to
obtain an HVZK LIP through Construction 3.6, we need a different approach.

We observe that if we plug into Construction 3.6 a PCP that is HVZK (see Definition 2.4), then the
corresponding LIP is also HVZK.

Lemma 3.11. In Lemma 3.7, if (PPCP, VPCP) is a HVZK PCP then (PLIP, VLIP) is a HVZK LIP.

4 Definitions of SNARKs and Preprocessing SNARKs

We now turn to the cryptographic part of this work. We start by recalling the notions of a SNARK and a
preprocessing SNARK.

21

In fact, before we do so, we first recall the universal relation [BG08], which provides us with a canonical
form to represent verification-of-computation problems. Because such problems typically arise in the form
of algorithms (e.g., “is there w that makes program P accept (x,w)?”), we adopt the universal relation
relative to random-access machines [CR72, AV77].

Definition 4.1. The universal relation is the set RU of instance-witness pairs (y, w) =
(
(M,x, t), w

)
,

where |y|, |w| ≤ t and M is a random-access machine, such that M accepts (x,w) after at most t steps.4

We denote by LU the universal language corresponding toRU .

We now proceed to define SNARGs and preprocessing SNARGs. A succinct non-interactive argument
(SNARG) is a triple of algorithms (G,P, V) that works as follows. The (probabilistic) generator G, on
input the security parameter λ (presented in unary) and a time bound T , outputs a reference string σ and
a corresponding verification state τ . The honest prover P (σ, y, w) produces a proof π for the instance
y = (M,x, t) given a witness w, provided that t ≤ T ; then V (τ, y, π) verifies the validity of π.

The SNARG is adaptive if the prover may choose the statement after seeing σ, otherwise, it is non-
adaptive; the SNARG is fully-succinct if G runs “fast”, otherwise, it is of the preprocessing kind.

Definition 4.2. A triple of algorithms (G,P, V) is a SNARG for the relation R ⊆ RU if the following
conditions are satisfied:

1. Completeness

For every large enough security parameter λ ∈ N, every time bound T ∈ N, and every instance-
witness pair (y, w) =

(
(M,x, t), w

)
∈ R with t ≤ T ,

Pr

[
V (τ, y, π) = 1

∣∣∣∣ (σ, τ)← G(1λ, T)
π ← P (σ, y, w)

]
= 1 .

2. Soundness (depending on which notion is considered)

• non-adaptive: For every polynomial-size prover P ∗, every large enough security parameter λ ∈ N,
every time bound T ∈ N, and every instance y = (M,x, t) for which @w s.t. (y, w) ∈ R,

Pr

[
V (τ, y, π) = 1

∣∣∣∣ (σ, τ)← G(1λ, T)
π ← P ∗(σ, y)

]
≤ negl(λ) .

• adaptive: For every polynomial-size prover P ∗, every large enough security parameter λ ∈ N, and
every time bound T ∈ N,

Pr

[
V (τ, y, π) = 1

@w s.t. (y, w) ∈ R

∣∣∣∣ (σ, τ)← G(1λ, T)
(y, π)← P ∗(σ)

]
≤ negl(λ) .

3. Efficiency

There exists a universal polynomial p (independent of R) such that, for every large enough security
parameter λ ∈ N, every time bound T ∈ N, and every instance y = (M,x, t) with t ≤ T ,

4While the witness w for an instance y = (M,x, t) has size at most t, there is no a-priori polynomial bounding t in terms of
|x|. Also, the restriction that |y|, |w| ≤ t simplifies notation but comes with essentially no loss of generality: see [BSCGT13a] for
a discussion of how to deal with “large inputs” (i.e., x or w much larger than t, in the model where M has random access to them).

22

• the generator G runs in time

{
p(λ+ log T) for a fully-succinct SNARG
p(λ+ T) for a preprocessing SNARG

;

• the prover P runs in time

{
p(λ+ |M |+ |x|+ t+ log T) for a fully-succinct SNARG
p(λ+ |M |+ |x|+ T) for a preprocessing SNARG

;

• the verifier V runs in time p(λ+ |M |+ |x|+ log T);

• an honestly generated proof has size p(λ+ log T).

Proof of knowledge. A SNARG of knowledge (SNARK) is a SNARG where soundness is strengthened as

follows:

Definition 4.3. A triple of algorithms (G,P, V) is a SNARK for the relation R if it is a SNARG for R
where adaptive soundness is replaced by the following stronger requirement:

• Adaptive proof of knowledge5

For every polynomial-size prover P ∗ there exists a polynomial-size extractor E such that for every
large enough security parameter λ ∈ N, every auxiliary input z ∈ {0, 1}poly(λ), and every time bound
T ∈ N,

Pr

 V (τ, y, π) = 1
(y, w) /∈ R

∣∣∣∣∣∣
(σ, τ)← G(1λ, T)
(y, π)← P ∗(z, σ)

w ← E(z, σ)

 ≤ negl(λ) .

One may want to distinguish between the case where the verification state τ is allowed to be public or
needs to remain private: a publicly-verifiable SNARK (pvSNARK) is one where security holds even if τ is
public; in contrast, a designated-verifier SNARK (dvSNARK) is one where τ needs to remain secret.

Zero-knowledge. A zero-knowledge SNARK (or “succinct NIZK of knowledge”) is a SNARK satisfying a
zero-knowledge property. Namely, zero knowledge ensures that the honest prover can generate valid proofs
for true theorems without leaking any information about the theorem beyond the fact that the theorem is true
(in particular, without leaking any information about the witness that he used to generate the proof for the
theorem). Of course, when considering zero-knowledge SNARKs, the reference string σ must be a common
reference string that is trusted, not only by the verifier, but also by the prover.

Definition 4.4. A triple of algorithms (G,P, V) is a (perfect) zero-knowledge SNARK for the relationR
if it is a SNARK forR and, moreover, satisfies the following property:

• Zero Knowledge

There exists a stateful interactive polynomial-size simulator S such that for all stateful interactive
polynomial-size distinguishers D, large enough security parameter λ ∈ N, every auxiliary input
z ∈ {0, 1}poly(λ), and every time bound T ∈ N,

Pr

 t ≤ T
(y, w) ∈ RU
D(π) = 1

∣∣∣∣∣∣
(σ, τ)← G(1λ, T)
(y, w)← D(z, σ)
π ← P (σ, y, w)

 = Pr

 t ≤ T
(y, w) ∈ RU
D(π) = 1

∣∣∣∣∣∣
(σ, τ, trap)← S(1λ, T)

(y, w)← D(z, σ)
π ← S(z, σ, y, trap)

 .

5One can also formulate weaker proof of knowledge notions. In this work we focus on the above strong notion.

23

As usual, Definition 4.4 can be relaxed to consider the case in which the distributions are only statisti-
cally or computationally close.

As observed in [BCCT12], dvSNARKs (resp., pvSNARKs) can be combined with zero-knowledge (not-
necessarily-succinct) non-interactive arguments (NIZKs) of knowledge to obtain zero-knowledge dvSNARKs
(resp., pvSNARKs). This observation immediately extends to preprocessing SNARKs, thereby providing a
generic method to construct zero-knowledge preprocessing SNARKs from preprocessing SNARKs.

In this work, we also consider more “direct”, and potentially more efficient, ways to construct zero-
knowledge preprocessing SNARKs by relying on various constructions of HVZK LIPs (and without relying
on generic NIZKs). See Section 6.3.

(We note that when applying the transformations of [BCCT13], e.g. to remove preprocessing, zero
knowledge is preserved.6)

Multiple theorems. A desirable property (especially so when preprocessing is expensive) is the ability to
generate σ once and for all and then reuse it in polynomially-many proofs (potentially by different provers).
Doing so requires security also against provers that have access to a proof-verification oracle. While for
pvSNARKs this multi-theorem proof of knowledge property is automatically guaranteed, this is not the
case for dvSNARKs. In Appendix C, we formally define and discuss this stronger notion of security, and
show that some of our dvSNARKs achieve this security notion because of the “strong knowledge” of the
underlying LIPs. (We note that, like zero-knowledge above, the multi-theorem proof-of-knowledge property
is preserved by the transformations of [BCCT13].)

OUR FOCUS. In this work we study preprocessing SNARKs, where (as stated in Definition 4.2) the gen-
erator G may run in time polynomial in the security parameter λ and time bound T .

4.1 Preprocessing SNARKs for Boolean Circuit Satisfaction Problems

In Section 4, we have defined SNARKs for the universal relation. In this work, at times it will be more
convenient to discuss preprocessing SNARKs for boolean circuit satisfaction problems rather than for the
universal relation.7 We thus briefly sketch the relevant definitions, and also explain how preprocessing
SNARKs for boolean circuit satisfaction problems suffice for obtaining preprocessing SNARKs, with sim-
ilar efficiency, for the universal relation. (Indeed, because we are often interested in the correctness of
algorithms, and not boolean circuits, it is important that this transformation be efficient!)

We begin by introducing boolean circuit satisfaction problems:

Definition 4.5. The boolean circuit satisfaction problem of a boolean circuit C : {0, 1}n × {0, 1}h →
{0, 1} is the relation RC = {(x,w) ∈ {0, 1}n × {0, 1}h : C(x,w) = 1}; its language is denoted LC . For
a family of boolean circuits C =

{
C` : {0, 1}n(`) × {0, 1}h(`) → {0, 1}

}
`∈N, we denote the corresponding

infinite relation and language byRC =
⋃
`∈NRC` and LC =

⋃
`∈N LC` .

A preprocessing SNARK for a uniform family of boolean circuits C is defined analogously to a prepro-
cessing SNARK for the universal relation, with only small syntactic modifications. The (probabilistic) gen-
eratorG, on input the security parameter λ and an index ` for the circuitC` : {0, 1}n(`)×{0, 1}h(`) → {0, 1},

6 The definition of proof of knowledge of a SNARK (Definition 4.3) says that the extractor is given the same inputs that are
given to the prover, but nothing else; in particular, the extractor does not receive any trapdoor. The transformation of Bitansky
et al. [BCCT13] crucially relies on this fact. Thus, if one is interested in constructing a zero-knowledge SNARK via the result
of [BCCT12] and then invoke the result of [BCCT13], one must be mindful to rely on (not-necessarily-succinct) non-interactive
arguments of knowledge where the extractor does not require a trapdoor. (E.g., the extractor in [AF07] does not require a trapdoor.)

7This is because our information-theoretic constructions (see Section 3), which we use towards the construction of preprocessing
SNARKs, are more conveniently stated for boolean circuit satisfaction problems.

24

outputs a reference string σ and a corresponding verification state τ . (Both τ and σ can be thought to in-
clude λ and `.) Given w, the honest prover P (σ, x, w) produces a proof π attesting that x ∈ LC` ; then,
V (τ, x, π) verifies the validity of π. As for efficiency, we require that there exists a universal polynomial p
(independent of the family C) such that for every large enough security parameter λ ∈ N, index ` ∈ N, and
input x ∈ {0, 1}n(`):

• the generator G runs in time p(λ+ |C`|)

• the prover P runs in time p(λ+ |C`|);

• the verifier V runs in time p(λ+ |x|+ log |C`|);

• an honestly generated proof has size p(λ+ log |C`|).

We can also consider the case where C is a non-uniform family, in which caseG and P will get as additional
input the circuit C`.

Let us now explain how to obtain a preprocessing SNARK forRU from preprocessing SNARKs for uni-
form families of boolean circuits. To do so, we need to introduce the notion of a universal RAM simulator:

Definition 4.6. Let n ∈ N. We say that a boolean circuit family Cn = {CT : {0, 1}n×{0, 1}h(T) → {0, 1}}T
is a universal RAM simulator for n-bit instances if, for every y = (M,x, t) with |y| = n, CT (y, ·) is
satisfiable if and only if y ∈ LU and t ≤ T . A witness map of Cn, denoted w, is a function such that, for
every y = (M,x, t) with |y| = n and t ≤ T , if (y, w) ∈ RU then CT (y,w(T, y, w)) = 1. An inverse
witness map of Cn, denoted w−1, is a function such that, for every y = (M,x, t) with |y| = n and t ≤ T , if
CT (y, w′) = 1 then (y,w−1(T, y, w′)) ∈ RU .

For every n ∈ N, given a preprocessing SNARK (G,P, V) for a universal RAM simulator Cn (for n-bit
instances) with (efficient) witness map w and inverse witness map wit−1, we can construct a preprocessing
SNARK (G′n, P

′
n, V

′
n) for those pairs (y, w) in the universal relation with |y| = n as follows:

• G′n(1λ, T) := G(1λ, T);

• P ′n(σ, y, w) := P (σ, y,w(T, y, w));

• V ′n(τ, y, π) := V (τ, y, π).

Note that wit−1 does not take part in the construction of (G′n, P
′
n, V

′
n), but its existence ensures that proof of

knowledge is preserved. (Concretely, a knowledge extractor E′n for a prover convincing V ′n would first run
a knowledge extractor for the same prover convincing V and then run wit−1 to obtain a suitable witness.)

The efficiency of C, w, and w−1 has direct implications to the efficiency of (G′n, P
′
n, V

′
n). Concretely:

• Let f(T) := |CT |. The growth rate of f(T) affects the efficiency ofG′n and P ′n, because the efficiency
of G and P depends on |CT |. So, for instance, if G and P run in time |CT |2 · poly(λ) and f(T) =
Ω(T 2), then G′n and P ′n run in time Ω(T 4) · poly(λ).

• The running time of w affects the running time of P ′n. Indeed, P ′n must first transform the witness
w for y into a witness w′ for CT (y, ·), and only then he can invoke P . So, for instance, even if
f(T) = Õ(T) but w runs in time Ω(T 3), then P ′n will run in time Ω(T 3).

25

• The running time of w−1 sometimes affects the running time of G′n, P ′n, and V ′n. Indeed, if the proof
of knowledge property of (G′n, P

′
n, V

′
n) is used in a security reduction (e.g., verifying the correctness

of cryptographic computations) then the slower w−1 is the more expensive is the security reduction,
and thus the larger the security parameter has to be chosen for (G,P, V). A larger security parameter
affects the efficiency of all three algorithms.

We thus wish the growth rate of f(T) to be as small as possible, and that w and w−1 be as fast as possible.
The reduction from RAM computations to circuits of Ben-Sasson et al. [BSCGT13a] implies that there is
a universal RAM simulator where f(T) = Õ(T) and both w and w−1 run in sequential time Õ(T) (or in
parallel time O((log T)2)).

Next, we explain how to remove the restriction on the instance size, by using collision-resistant hashing.
(Indeed, (G′n, P

′
n, V

′
n) only handles instances y with |y| = n.) Let H = {Hλ}λ∈N be a collision-resistant

hash-function family such that functions in Hλ map {0, 1}∗ to {0, 1}λ. For any h ∈ Hλ and instance y,
define yh to be the instance (Uh, h(x), poly(λ) + O(t)), where Uh is a universal random-access machine
that, on input (x̃, w̃), parses w̃ as ((M,x, t), w), verifies that x̃ = h(M,x, t), and then runs M(x,w) for at
most t steps. Because we can assume a uniform super-polynomial upper bound on t, say t ≤ λlog λ, there is
a constant c > 0 for which we can assume that |yh| = λc. Then, we can construct a preprocessing SNARK
(G′′, P ′′, V ′′) for the universal relation as follows:

• G′′(1λ, T) outputs (σ̃, τ̃) :=
(
(σ, h), (τ, h)

)
where (σ, τ)← G′λc(1

λ, T) and h← Hλ;

• P ′′(σ̃, y, w) := P ′λc(σ, yh, (y, w));

• V ′′(τ̃ , y, π) := V ′λc(τ, yh, π).

The proof of knowledge property and the collision-resistant property ensure that the construction above is a
preprocessing SNARK for the universal relation.

In sum, asymptotically, we incur in essentially no overhead if we focus on constructing preprocessing
SNARKs for uniform families of boolean circuits.

5 Linear-Only Encryption and Encodings

We introduce and discuss the two cryptographic tools used in this paper. First, in Section 5.1, we present
linear-only encryption and then, in Section 5.2, linear-only one-way encodings. In Section 5.3, we discuss
candidate instantiations for both. Later, in Section 6, we describe how to use these tools in our transforma-
tions from LIPs to SNARKs (or SNARGs).

5.1 Linear-Only Encryption

At high-level, a linear-only encryption scheme is a semantically-secure encryption scheme that supports
linear homomorphic operations, but does not allow any other form of homomorphism.

We first introduce the syntax and correctness properties of linear-only encryption; then its (standard)
semantic-security property; and finally its linear-only property. In fact, we consider two formalizations of
the linear-only property (a stronger one and a weaker one).

Syntax and correctness. A linear-only encryption scheme is a tuple of algorithms (Gen,Enc,Dec,Add,
ImVer) with the following syntax and correctness properties:

26

• Given a security parameter λ (presented in unary), Gen generates a secret key sk and a public key pk.
The public key pk also includes a description of a field F representing the plaintext space.

• Enc and Dec are (randomized) encryption and (deterministic) decryption algorithms working in the
usual way.

• Add(pk, c1, . . . , cm, α1, . . . , αm) is a homomorphic evaluation algorithm for linear combinations.
Namely, given a public key pk, ciphertexts {ci ∈ Encpk(ai)}i∈[m], and field elements {αi}i∈[m], Add
computes an evaluated ciphertext ĉ ∈ Encpk(

∑
i∈[m] αiai).

• ImVersk(c
′) tests, using the secret key sk, whether a given candidate ciphertext c′ is in the image of

Encpk.

Remark 5.1. Because in most of this paper we restrict attention to LPCPs and LIPs over fields, we present
linear-only encryption schemes for the case where plaintexts belong to a field. The definition naturally
extends to the case where plaintexts belong to a ring. Typically, we are interested in the ring ZN for either
the case where N is a prime p (in which case the ring Zp is isomorphic to the field Fp) or where N is the
product of two primes. (See corresponding Remark (2.6) in the LIP definition.)

Remark 5.2. A symmetric-key variant of linear-only encryption can be easily defined. While ultimately a
private-key linear homomorphic encryption implies a public-key one [Rot11], using a private-key encryption
could, in principle, have efficiency benefits.

Remark 5.3. The linear homomorphism property can be relaxed to allow for cases where the evaluated
ciphertext ĉ is not necessarily in the image of Encpk, but only decrypts to the correct plaintext; in particular,
it may not be possible to perform further homomorphic operations on such a cipher.

Semantic security. Semantic security of linear-only encryption is defined as usual. Namely, for any
polynomial-size adversary A and large enough security parameter λ ∈ N:

Pr

b′ = b

∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(a0, a1)← A(pk)
b← {0, 1}

b′ ← A
(
pk,Encpk(ab)

)
 ≤ 1

2
+ negl(λ) .

Linear-only homomorphism. The linear-only (homomorphism) property essentially says that, given a
public key pk and ciphertexts (c1, . . . , cm), it is infeasible to compute a new ciphertext c′ in the image
of Encpk, except by evaluating an affine combination of the ciphertexts (c1, . . . , cm). (Affinity accounts
for adversaries encrypting plaintexts from scratch and then adding them to linear combinations of the ci.)
Formally, the property is captured by guaranteeing that, whenever the adversary produces a valid ciphertext,
it is possible to efficiently extract a corresponding affine function “explaining” the ciphertext.

Definition 5.4. An encryption scheme has the linear-only (homomorphism) property if for any polynomial-
size adversary A there is a polynomial-size extractor E such that, for any sufficiently large λ ∈ N, any
auxiliary input z ∈ {0, 1}poly(λ), and any plaintext generatorM,

Pr

∃ i ∈ [k] s.t.

ImVersk(c
′
i) = 1

and
Decsk(c

′
i) 6= a′i

∣∣∣∣∣∣∣∣∣∣∣

(sk, pk)← Gen(1λ)
(a1, . . . , am)←M(pk)

(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))
(c′1, . . . , c

′
k)← A(pk, c1, . . . , cm; z)

(Π, b)← E(pk, c1, . . . , cm; z)
(a′1, . . . , a

′
k)> ← Π · (a1, . . . , am)> + b

 ≤ negl(λ) ,

27

where Π ∈ Fk×m and b ∈ Fk.

Remark 5.5 (on the auxiliary input z). In Definition 5.4, the polynomial-size extractor is required to succeed
for any (adversarial) auxiliary input z ∈ {0, 1}poly(λ). This requirement seems rather strong considering the
fact that z could potentially encode arbitrary circuits. For example, z could encode a circuit that, given as
input public key pk, outputs Encpk(x) where x = fs(pk) and fs is some hardwired pseudorandom function.
In this case, the extractor would be required to (efficiently) reverse engineer the circuit, which seems to be a
rather strong requirement (or even an impossible one, under certain obfuscation assumptions).

While for presentational purposes Definition 5.4 is simple and convenient, it can be relaxed to only
consider specific “benign” auxiliary-input distributions. Indeed, in our application, it will be sufficient to
only consider a truly-random auxiliary input z. (Requiring less than that seems to be not expressive enough,
because we would at least like to allow the adversary to toss random coins.)

An analogous remark holds for both Definitions 5.8 and 5.17.

Remark 5.6 (oblivious ciphertext sampling). Definition 5.4 has a similar flavor to plaintext awareness. In
fact, an encryption scheme cannot satisfy the definition if it allows for “oblivious sampling” of ciphertexts.
(For instance, both standard Elgamal and Paillier encryption do.) Thus, the set of strings c that are valid (i.e.,
for which ImVersk(c) = 1) must be “sparse”. Later on, we define a weaker notion of linear-only encryption
that does not have this restriction.

Remark 5.7. In order for Definition 5.4 to be non-trivial, the extractor E has to be efficient (for otherwise
it could run the adversary A, obtain A’s outputs, decrypt them, and then output a zero linear function and
hard-code the correct values in the constant term). As for the equivalent formulation in Remark (5.11),
for similar reasons the simulator S has to be efficient; additionally, requiring statistical indistinguishability
instead of computational indistinguishability does not strengthen the assumption.

Linear targeted malleability. We also consider a weaker variant of the linear-only property, which we call
linear targeted malleability. (Indeed, the definition follows the lines of the notion of targeted malleability
proposed by Boneh et al. [BSW12], when restricted to the class of linear, or affine, functions.)

Definition 5.8. An encryption scheme has the linear targeted malleability property if for any polynomial-
size adversary A and plaintext generator M there is a polynomial-size simulator S such that, for any
sufficiently large λ ∈ N, and any auxiliary input z ∈ {0, 1}poly(λ), the following two distributions are
computationally indistinguishable:

pk,
a1, . . . , am,
s,
Decsk(c

′
1), . . . ,Decsk(c

′
k)

∣∣∣∣∣∣∣∣∣∣∣∣

(sk, pk)← Gen(1λ)
(s, a1, . . . , am)←M(pk)

(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))
(c′1, . . . , c

′
k)← A(pk, c1, . . . , cm; z)

where
ImVersk(c

′
1) = 1, . . . , ImVersk(c

′
k) = 1

,

and
pk,
a1, . . . , am,
s,
a′1, . . . , a

′
k

∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(s, a1, . . . , am)←M(pk)
(Π, b)← S(pk; z)

(a′1, . . . , a
′
k)
> ← Π · (a1, . . . , am)> + b

where Π ∈ Fk×m, b ∈ Fk, and s is some arbitrary string (possibly correlated with the plaintexts).

28

Remark 5.9. Definition 5.8 can be further relaxed to allow the simulator to be inefficient. Doing so does not
let us prove knowledge but still enables us to prove soundness (i.e., obtain a SNARG instead of a SNARK).
See Remark (6.4) in Section 6.1.

As mentioned above, Definition 5.8 is weaker than Definition 5.4, as shown by the following lemma.

Lemma 5.10. If a semantically-secure encryption scheme has the linear-only property (Definition 5.4), then
it has the linear targeted malleability property (Definition 5.8).

Proof sketch. Let E be the (polynomial-size) extractor of a given polynomial-size adversary A. We use E
to construct a (polynomial-size) simulator S for A. The simulator S simply runs E on fake ciphertexts:

S(pk; z) ≡
1. (c1, . . . , cm)← (Encpk(0), . . . ,Encpk(0));
2. (y, c′1, . . . , c

′
k)← A(pk, c1, . . . , cm; z);

3. (Π, b)← E(pk, c1, . . . , cm; z);
4. output (y,Π, b).

By invoking semantic security and the extraction guarantee of E, we can show that S works. The proof
follows by a standard hybrid argument. First we consider an experiment where S gives A and E an encryp-
tion of a ← M(pk), rather than an encryption of zeros, and argue computational indistinguishability by
semantic security. Then we can show that the output in this hybrid experiment is statistically close to that in
the real experiment by invoking the extraction guarantee.

A converse to Lemma 5.10 appears unlikely, because Definition 5.8 seems to allow for encryption
schemes where ciphertexts can be obliviously sampled while Definition 5.4 does not.

Remark 5.11 (alternative formulation). To better compare Definition 5.8 with Definition 5.4, we now give
an equivalent formulation of Definition 5.4. For any polynomial-size adversary A there is a polynomial-
size simulator S such that, for any sufficiently large λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and any
plaintext generatorM, the following two distributions are computationally indistinguishable:

pk,
a1, . . . , am,
c1, . . . , cm,
outsk(c

′
1), . . . , outsk(c

′
k),

z

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(a1, . . . , am)←M(pk)
(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))

(c′1, . . . , c
′
k)← A(pk, c1, . . . , cm; z)

where outsk(c

′) :=

{
Decsk(c

′) if ImVersk(c
′) = 1

⊥ if ImVersk(c
′) = 0

, and

pk,
a1, . . . , am,
c1, . . . , cm,
a′1, . . . , a

′
k,

z

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(a1, . . . , am)←M(pk)
(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))

(Π, b)← S(pk, c1, . . . , cm; z)
(a′1, . . . , a

′
k)
> = Π · (a1, . . . , am)> + b

where Π ∈ Fk×m and b ∈ Fk, with the convention that if the i-th row of Π is left empty then a′i := ⊥.

29

5.2 Linear-Only One-Way Encoding

Unlike linear-only encryption schemes, linear-only encoding schemes allow to publicly test for certain prop-
erties of the underlying plaintexts without decryption (which is now allowed to be inefficient). In particular,
linear-only encoding schemes cannot satisfy semantic security. Instead, we require that they only satisfy a
certain one-wayness property.

We now define the syntax and correctness properties of linear-only encoding schemes, their one-wayness
property, and their linear-only property.

Syntax and correctness. A linear-only encoding scheme is a tuple of algorithms (Gen,Enc, SEnc,Test,
Add, ImVer) with the following syntax and correctness properties:

• Given a security parameter λ (presented in unary), Gen generates a public key pk. The public key pk
also includes a description of a field F representing the plaintext space.

• Encoding can be performed in two modes: Encpk is an encoding algorithm that works in linear-only
mode, and SEncpk is a deterministic encoding algorithm that works in standard mode.

• As in linear-only encryption, Add(pk, c1, . . . , cm, α1, . . . , αm) is a homomorphic evaluation algo-
rithm for linear combinations. Namely, given a public key pk, encodings {ci ∈ Encpk(ai)}i∈[m], and
field elements {αi}i∈[m], Add computes an evaluated encoding ĉ ∈ Encpk(

∑
i∈[m] αiai). Also, Add

works in the same way for any vector of standard-mode encodings {ci ∈ SEncpk(ai)}i∈[m].

• ImVerpk(c
′) tests whether a given candidate encoding c′ is in the image of Encpk (i.e., in the image of

the encoding in linear-only mode).

• Test
(
pk, t,Encpk(a1), . . . ,Encpk(am),SEncpk(ã1), . . . ,SEncpk(ãm̃)

)
is a public test for zeros of t.

Namely, given a public key pk, a test polynomial t : Fm → Fη, encodings Encpk(ai), and standard-
mode encodings SEncpk(ãi), Test tests whether t(a1, . . . , am, ã1, . . . , ãm̃) = 0η.

Remark 5.12 (degrees supported by Test). In this work, we restrict our attention to the case in which Test
only takes as input test polynomials t of at most quadratic degree. This restriction comes from the fact
that, at present, the only candidates for linear-only one-way encoding schemes that we know of are based
on bilinear maps, which only let us support testing of quadratic degrees. (See Section 5.3.) This restriction
propagates to the transformation from algebraic LIPs discussed in Section 6.2, where we must require that
the degree of the LIP query algorithm is at most quadratic. Nonetheless our transformation holds more
generally (for query algorithms of poly(λ) degree), when given linear-only one-way encoding schemes that
support tests of the appropriate degree.

∆-power one-wayness. In our main application of transforming algebraic LIPs into public-verifiable pre-
processing SNARKs (see Section 6.2), linear-only encoding schemes are used to (linearly) manipulate poly-
nomial evaluations over F. The notion of one-wayness that we require is that, given polynomially-many
encodings of low-degree polynomials evaluated at a random point s, it is hard to find s.

Definition 5.13. A linear-only encoding scheme satisfies ∆-power one-wayness if for every polynomial-size
A and all large enough security parameter λ ∈ N,

Pr

s∗ = s

∣∣∣∣∣∣∣∣∣∣
pk← Gen(1λ)

s← F
(c1, . . . , c∆)←

(
Encpk(s), . . . ,Encpk(s

∆)
)

(c̃1, . . . , c̃∆)←
(
SEncpk(s), . . . ,SEncpk(s

∆)
)

s∗ ← A
(
pk, c1, . . . , c∆, c̃1, · · · , c̃∆

)

 ≤ negl(λ) .

30

Our constructions of preprocessing SNARKs from LIPs also involve manipulations of multivariate poly-
nomials. Thus, we are in fact interested in requiring a more general property of multivariate ∆-power
one-wayness.

Definition 5.14. A linear-only encoding scheme satisfies multivariate ∆-power one-wayness if, for every
polynomial-size A, large enough security parameter λ ∈ N, and µ-variate polynomials (p1, . . . , p`) of total
degree at most ∆:

Pr

p∗ 6≡ 0

and
p∗(s) = 0

∣∣∣∣∣∣∣∣∣∣
pk← Gen(1λ)

s← Fµ
(c1, . . . , c`)←

(
Encpk(p1(s)), . . . ,Encpk(p`(s))

)
(c̃1, . . . , c̃`)←

(
SEncpk(p1(s)), . . . ,SEncpk(p`(s))

)
p∗ ← A

(
pk, c1, . . . , c`, c̃1, · · · , c̃`

)

 ≤ negl(λ) ,

where ∆, `, µ are all poly(λ), and p∗ is a µ-variate polynomial.

For the case of univariate polynomials (i.e., µ = 1), it is immediate to see that Definition 5.14 is
equivalent to Definition 5.13; this follows directly from the fact that univariate polynomials over finite fields
can be efficiently factored into their roots [Ber70, BO81, CZ81, VZGP01]. We show that the two definitions
are equivalent also for any µ = poly(λ), provided that the encoding scheme is rerandomizable; indeed, in
the instantiation discussed in this paper the encoding is deterministic and, in particular rerandomizable.

Proposition 5.15. If Enc,SEnc are rerandomizable (in particular, if deterministic), then (univariate) ∆-
power one-wayness implies (multivariate) ∆-power one-wayness for any µ = poly(λ).

Proof. Assume thatA violates the µ-variate ∆-power one-wayness with probability ε for a vector of polyno-
mials (p1, . . . , p`). We useA to construct a new adversaryA′ that breaks (univariate) ∆-power one-wayness
with probability at least ε/µ∆.

Given input
(
pk,Encpk(s), . . . ,Encpk(s

∆),SEncpk(s), . . . ,SEncpk(s
∆)
)
, A′ first samples i ∈ [µ] and

s1, . . . , si−1, si+1, . . . , sµ ∈ F at random. Then, thinking of s as si and s as (s1, . . . , sµ), A′ uses the linear
homomorphism and rerandomization to sample (Encpk(p1(s)), . . . ,Encpk(p`(s)),SEncpk(p1(s)), . . . ,SEncpk(p`(s))

)
and feeds these to A, who in turn outputs a polynomial p∗. Next, A′ does the following:

1. Let p∗1 = p∗, and set j := 1.

2. While j < i and p∗j (xj , xj+1, . . . , xµ) 6≡ 0:

(a) Decompose p∗j according to the xj-monomials: p∗j (xj , . . . , xµ) =
∑∆

k=0 x
k
j p
∗
j+1,k(xj+1, . . . , xµ).

(b) Set p∗j+1 to be the non-zero polynomial p∗j+1,k with minimal k.

(c) Set j := j + 1.

3. After computing p∗i , restrict the µ − i last variables to s, i.e. compute the xi-univariate polynomial
p∗i (xi, si+1, . . . , sµ), and factor it to find at most ∆ roots; finally, output one of the roots at random as
a guess for s = si.

To analyze the success probability of A′, we rely on the following claim:

Claim 5.16. If p∗ 6≡ 0 and p∗(s1, . . . , sµ) = 0, then there exists i ∈ [µ] such that:

p∗i (x, si+1, . . . , sµ) 6≡ 0

p∗i (si, si+1, . . . , sµ) = 0 .

31

Proof of Claim 5.16. The proof is by induction on i. The base case is when i = 1, for which it holds that:

p∗1(s1, . . . , sµ) = 0

p∗1(x1, . . . , xµ) 6≡ 0 .

For any i with 2 < i < µ, suppose that:

p∗i (si, . . . , sµ) = 0

p∗i (xi, . . . , xµ) 6≡ 0

p∗i (xi, si+1, . . . , sµ) ≡ 0 ;

then, by the construction of p∗i+1 from p∗i ,

p∗i+1(si+1, . . . , sµ) = 0

p∗i+1(xi+1, . . . , xµ) 6≡ 0 .

If this inductive process reaches p∗µ, then it holds that:

p∗µ(sµ) = 0

p∗µ(xµ) 6≡ 0 ,

which already satisfies the claim.

Note that A′ guesses the i guaranteed by Claim 5.16 with probability 1/µ, and hence, with the same
probability, finds a non-trivial polynomial that vanishes at the challenge point s = si; in such a case, A′ thus
guesses s correctly, from among at most ∆ roots, with probability at least 1/∆. The overall probability of
success of A′ is at lest ε/µ∆, and this concludes the proof of Proposition 5.15.

Linear-only homomorphism. The linear-only property of linear-only one-way encoding schemes is de-
fined analogously to the case of linear-only encryption. Essentially, it says that, given the public key pk,
encodings in linear-only mode (Encpk(a1), . . . ,Encpk(am)), and possibly additional encodings in standard
mode (SEncpk(ã1), . . . ,SEncpk(ãm̃)), it is infeasible to compute a new encoding c′ in the image of Encpk,
except by evaluating an affine combination of the encodings (Encpk(a1), . . . ,Encpk(am)); in particular,
“standard mode” encodings in the image of SEncpk cannot be “moved into” the image of Encpk. Formally,
the property is captured by guaranteeing that, whenever the prover produces a valid new encoding, it is
possible to efficiently extract the corresponding affine combination.

Definition 5.17. A linear encoding scheme has the linear-only (homomorphism) property if for any
polynomial-size adversary A there is a polynomial-size extractor E such that for any sufficiently large
λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and any plaintext generatorM:

Pr

(a′1, . . . , a

′
k)> = Π · (a1, . . . , am)> + b

and
∃ i ∈ [k] : ImVersk(c

′
i) = 1 but c′i 6∈ Encpk(a

′
i)

∣∣∣∣∣∣∣∣∣∣∣

pk← Gen(1λ)
(a1, . . . , am, ã1, . . . , ãm̃)←M(pk)

(c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am))
(c̃1, . . . , c̃m̃)← (SEncpk(ã1), . . . ,SEncpk(ãm̃))
(c′1, . . . , c

′
k)← A(pk, c1, . . . , cm, c̃1, . . . , c̃m̃; z)

(Π, b)← E(pk, c1, . . . , cm, c̃1, . . . , c̃m̃; z)

 ≤ negl(λ) ,

where Π ∈ Fk×m and b ∈ Fk.

32

5.3 Instantiations

We discuss candidates for our notions of linear-only encryption and one-way encoding schemes.

Linear-only property (and linear targeted malleability) from Paillier encryption. Paillier encryption
[Pai99] has plaintext group (ZN ,+), where N is a product of two λ-bit primes p and q. (See Remark (2.6)
and Remark (5.1).) We consider two variants of Paillier encryption:

• A “single-ciphertext” variant with linear targeted malleability. We assume that standard Pail-
lier encryption satisfies Definition 5.8. Note that this variant cannot satisfy Definition 5.4 (which is
stronger, as shown in Lemma 5.10), because it is easy to “obliviously sample” valid Paillier ciphertexts
without “knowing” the corresponding plaintext. (See Remark (5.6).)

• A “two-ciphertext” variant with linear-only property. In order to (heuristically) prevent oblivious
sampling, we can “sparsify” the ciphertext space of Paillier encryption by following the template of
knowledge-of-exponent assumptions. Concretely, an encryption of a plaintext a consists of Encpk(a)
and Encpk(α · a) for a secret random α ∈ ZN ; additionally, an image verification algorithm ImVersk
checks this linear relation. (This candidate is also considered in [GGPR13].) We then assume that this
variant of Paillier encryption satisfies Definition 5.4.

Because Paillier encryption is based on the decisional composite residuosity assumption, it suffers from
factoring attacks, and thus security for succinct arguments based on the above instantiations can only be
assumed to hold against subexponential-time provers (specifically, running in time 2o(λ

1/3)).

Linear-only property (and linear targeted malleability) from Elgamal encryption. Elgamal encryption
[EG85] has plaintext group (Zp,×) for a large prime p, and is conjectured to resist subexponential-time
attacks when implemented over elliptic curves [PQ12].

We are interested in additive, rather than multiplicative, homomorphism for plaintexts that belong to the
field Fp (whose elements coincide with those of Zp). Thus, we would like the plaintext group to be (Zp,+)
instead. The two groups (Zp,×) and (Zp,+) are in fact isomorphic via the function that maps a plaintext a
to a new plaintext ga(mod p), where g is a primitive element of Fp. Unfortunately, inverting this mapping
is computationally inefficient: in order to recover the plaintext a from ga(mod p), the decryption algorithm
has to compute a discrete logarithm base g; doing so is inefficient when a can be any value. Thus, a naive
use Elgamal encryption in our context presents a problem.

Nonetheless, as explained in Section 1.3.3, we can still use Elgamal encryption in our context by ensur-
ing that the distribution of the honest LIP prover’s answers, conditioned on any choice of verifier random-
ness, has a polynomial-size support. Doing so comes with two caveats: it results in succinct arguments with
only 1/poly(λ) security and (possibly) a slow online verification time (but, of course, with proofs that are
still succinct).

Here too, to prove security, we can consider single-ciphertext and two-ciphertext variants of Elgamal
encryption that we assume satisfy Definition 5.8 and Definition 5.4 respectively.

Linear-only property (and linear targeted malleability) from Benaloh encryption. Benaloh encryption
[Ben94] generalizes the quadratic-residuosity-based encryption scheme of Goldwasser and Micali [GM84]
to higher residue classes; it can support any plaintext group (Zp,+) where p is polynomial in the security pa-
rameter. Unlike Elgamal encryption (implemented over elliptic curves) and similarly to Paillier encryption,
Benaloh encryption is susceptible to subexponential-time attacks.

As before, we can consider single-ciphertext and two-ciphertext variants of Benaloh encryption that we
assume satisfy Definition 5.8 and Definition 5.4 respectively. Because we are restricted to p = poly(λ),
succinct arguments based on Benaloh encryption can only yield 1/poly(λ) security.

33

Linear-only one-way encodings from KEA in bilinear groups. In order to obtain publicly-verifiable pre-
processing SNARKs (see Section 6.2), we seek linear-only encodings that have poly(λ)-power one-wayness
and allow to publicly test for zeroes of poly(λ)-degree polynomials. For this, we use the same candidate en-
coding over bilinear groups, and essentially the same assumptions, as in [Gro10, Lip12, GGPR13]; because
of the use of bilinear maps, we will in fact only be able to publicly test for zeros of quadratic polynomials.

For the sake of completeness, and since the construction does not correspond directly to a known en-
cryption scheme as in the examples above, we give the basic construction and relevant assumptions.

The encoding is defined over a bilinear group ensemble {Gλ}λ∈N where each (G,GT) ∈ Gλ is a pair of
groups of prime order p ∈ (2λ−1, 2λ) with an efficiently-computatable pairing e : G × G → GT. A public
key pk includes the description of the groups and g, gα ∈ G, where g ∈ G∗ is a generator and α ← Fp is
random. The encoding is deterministic: the linear-only mode encoding is Encpk(a) := (ga, gαa), and the
standard-mode encoding is SEncpk(a) := ga. Public image verification is as follows: ImVerpk(f, f

′) outputs
1 if and only if e(f, gα) = e(g, f ′). Public testing of quadratic polynomials can also be done using the
pairing: for {(gi, gαi)}i∈[m] = {Encpk(ai)}i∈[m] and {g̃i}i∈[m̃] = {SEncpk(ãi)}i∈[m̃], Test uses g1, . . . , gm
and g̃1, . . . , g̃m̃ and the pairing to test zeros for a quadratic polynomial t. The required cryptographic
assumptions are:

Assumption 5.18 (KEA and poly-power DL in bilinear groups). There exists an efficiently-samplable group
ensemble {Gλ}λ∈N, where each (G,GT) ∈ Gλ are groups of prime order p ∈ (2λ−1, 2λ) having a corre-
sponding efficiently-computable pairing e : G×G→ GT, such that the following properties hold.

1. Knowledge of exponent: For any polynomial-size adversary A there exists a polynomial-size extrac-
tor E such that for all large enough λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ),8 and any group
element sampler S,

Pr

 f ′ = fα∏
i∈[t] g

πi
i 6= f

∣∣∣∣∣∣∣∣∣∣
(G,GT)← Gλ

(g1, . . . , gt)← S(G,GT)
α← Fp

(f, f ′)← A(G,GT, g1, g
α
1 , . . . , gt, g

α
t ; z)

(π1, . . . , πt)← E(G,GT, g1, g
α
1 , . . . , gt, g

α
t ; z)

 ≤ negl(λ) .

2. Hardness of poly-power discrete logarithms: For any polynomial-size adversary A, polynomial t =
poly(λ), all large enough λ ∈ N, and generator sampler S:

Pr

s′ = s

∣∣∣∣∣∣∣∣
(G,GT)← Gλ

s← Fp

g ← S(G) where 〈g〉 = G
s′ ← A(G,GT, g, g

s, gs
2
. . . , gs

t
)

 ≤ negl(λ) .

Remark 5.19 (lattice-based candidates). In principle, we may also consider as candidates lattice-based en-
cryption schemes (e.g., [Reg05]). However, our confidence that these schemes satisfy linear-only properties
may be more limited, as they can be tweaked to yield fully-homomorphic encryption schemes [BV11].

8It is possible to restrict the definition to specific auxiliary input distributions. See Remark (5.5).

34

6 Preprocessing SNARKs from LIPs

We describe how to combine LIPs and linear-only encryption and encodings in order to construct prepro-
cessing SNARKs. Before describing our transformations, we make two technical remarks.

SNARKs and LIPs for boolean circuit families. Since the LIPs that we have presented so far are for
boolean circuit satisfaction problems, it will be convenient to construct here preprocessing SNARKs for
boolean circuit satisfaction problems. As explained in Section 4.1, such preprocessing SNARKs imply
preprocessing SNARKs for the universal relationRU with similar efficiency.

Also, for the sake of simplicity, the LIP constructions that we have presented so far are for satisfiability
of specific boolean circuits. However, all of these constructions directly extend to work for any family of
boolean circuits C = {C`}`∈N, in which case all the LIP algorithms (e.g., VLIP = (QLIP, DLIP) and PLIP)
will also get as input 1` (as foreshadowed in Remark (2.3)). If the circuit family C is uniform, all the LIP
algorithms are uniform as well. If the circuit family C is non-uniform, then QLIP and PLIP will also get a
circuit C` as auxiliary input (in addition to 1`).

Field size depending on λ. Definition 2.5 (and Definition 2.2) are with respect to a fixed field F. However,
since the knowledge error of a LIP (or LPCP) typically decreases with the field size, it is often convenient
to let the size of F scale with a security parameter λ. In fact, when combining a LIP with some of our
linear-only encryption and encoding candidates, letting F scale with λ is essential, because security will
only hold for a large enough plaintext space. (For example, this is the case for the Elgamal-like linear-only
encoding described in Section 5.3). All of the LIP constructions described in Sections 3.1 and 3.2 do work
for arbitrarily large fields, and we can assume that (PLIP, VLIP) simply get as additional input the description
of the field; abusing notation, we will just denote this description by Fλ.

6.1 Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs

We describe how to combine a LIP and linear-only encryption to obtain a designated-verifier preprocessing
SNARK.

Construction 6.1. Let {Fλ}λ∈N be a field ensemble (with efficient description and operations). Let C =
{C`}`∈N be a family of circuits. Let (PLIP, VLIP) be an input-oblivious two-message LIP for the relation RC ,
where for the field Fλ, the verifier message is in Fmλ , the prover message is in Fkλ, and the knowledge error
is ε(λ). Let E = (Gen,Enc,Dec,Add, ImVer) be a linear-only encryption scheme whose plaintext field, for
security parameter λ, is Fλ. We define a preprocessing SNARK (G,P, V) forRC as follows.

• G(1λ, 1`) invokes the LIP query algorithm QLIP(Fλ, 1`) to generate an LIP message q ∈ Fmλ along
with a secret state u ∈ Fm′ , generates (sk, pk) ← Gen(1λ), computes ci ← Encpk(qi) for i ∈ [m],
defines σ := (pk, c1, . . . , cm) and τ := (sk,u), and outputs (σ, τ). (Assume that both (σ, τ) contain
` and the description of the field Fλ).

• P (σ, x, w) invokes the LIP prover algorithm PLIP(Fλ, 1`, x, w) to get a matrix Π ∈ Fk×mλ representing
its message function, invokes the homomorphic Add to generate k ciphertexts c′1, . . . , c

′
k encrypting

Π · q, defines π := (c′1, . . . , c
′
k), and outputs π.

• V (τ, x, π), verifies, for i ∈ [k], that ImVersk(c
′
i) = 1, lets ai := Decsk(c

′
i) and outputs the decision of

DLIP(Fλ, 1`, x,u, (a1, . . . , ak)).

35

Lemma 6.2. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is a linear-only encryp-
tion scheme. Then, (G,P, V) from Construction 6.1 is a designated-verifier preprocessing SNARK with
knowledge error ε(λ) + negl(λ). Furthermore:
• time(G) = time(QLIP) + poly(λ) ·m,
• time(P) = time(PLIP) + poly(λ) · k2 ·m,
• time(V) = time(DLIP) + poly(λ) · k,
• |σ| = poly(λ) ·m, |τ | = poly(λ) +m′, and |π| = poly(λ) · k.

Proof sketch. Completeness easily follows from the completeness of (PLIP, VLIP) and the correctness of E .
Efficiency as claimed above is easy to see. We thus focus on establishing the knowledge property.

Let P ∗ be a malicious polynomial-size prover. We construct a knowledge extractor E for P ∗ in two
steps: first invoke the linear-only extractor E′ for P ∗ (on the same input as P ∗) to obtain an LIP affine
transformation Π∗ “explaining” the encryptions output by P ∗, and then invoke the LIP extractor ELIP (with
oracle access to Π∗ and on input the statement chosen by P ∗) to obtain an assignment for the circuit. We
now argue that E works correctly.

First, we claim that, except with negligible probability, whenever P ∗(σ) produces a statement x and
proof c′ = (c′1, . . . , c

′
k) accepted by the verifier, the extracted Π∗ is such that DLIP(Fλ, 1`, x,u,a∗) = 1,

where u is the private state of the verifier and a∗ = Π∗(q). Indeed, by the linear-only property of E (see
Definition 5.4), except with negligible probability, whenever the verifier is convinced, a∗ = Π∗(q) is equal
to a = Decsk(c

′), which is accepted by the LIP decision algorithm.
Second, we claim that, due to semantic security of E , the extracted proof Π∗ is not only “locally sat-

isfying” (i.e., such that DLIP(Fλ, 1`, x,u,Π∗(q)) = 1 where q is the message encrypted in σ), but it is in
fact satisfying for all but a negligible fraction of queries q; otherwise, E could be used to break semantic
security.

We can then conclude that Π∗ convinces the LIP verifier for most messages, and thus can be used to
extract a valid witness.

(The above proof is similar to proofs establishing security in other works where semantic security and
extraction are used in conjunction. For a detailed such proof see, for example, [BCCT12].)

Designated-verifier non-adaptive preprocessing SNARKs from linear targeted malleability. We also
consider a notion that is weaker than linear-only encryption: encryption with linear targeted malleability (see
Definition 5.8). For this notion, we are still able to obtain, via the same Construction 6.1, designated-verifier
preprocessing SNARKs, but this time only against statements that are non-adaptively chosen.

Lemma 6.3. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is an encryption scheme with
linear targeted malleability. Then, (G,P, V) from Construction 6.1 is a designated-verifier non-adaptive
preprocessing SNARK with knowledge error ε(λ) + negl(λ).

Proof sketch. Let P ∗ be a malicious polynomial-size prover, which convinces the verifier for infinitely many
false statements x ∈ X . By the targeted malleability property (see Definition 5.8), there exists a polynomial-

36

size simulator S (depending on P ∗) such that such that:

pk,
q,
u,
a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk, pk)← Gen(1λ)
(q,u)← QLIP

c← Encpk(q)
c′ ← P ∗(pk, c;x)

where
ImVersk(c

′) = 1
a← Decsk(c

′)

≈c

pk,
q,
u,
a

∣∣∣∣∣∣∣∣
(sk, pk)← Gen(1λ)

(q,u)← QLIP

(Π, b)← S(pk;x)
a← Π · q + b

 ,

where q is the LIP query and u is the LIP verification state.
If P ∗ convinces the verifier to accept with probability at least ε(λ), then, with at least the same probabil-

ity, the distribution on the left satisfies that DLIP(x,u,a) = 1. Because this condition is efficiently testable,
the simulated distribution on the right satisfies the same condition with probability at least ε(λ) − negl(λ).
However, in this distribution the generation of q and u is independent of the generation of the simulated
affine function Π′ = (Π, b). Therefore, by averaging, there is some (in fact, roughly an ε(λ)/2-fraction) Π′

such that, with probability at least ε(λ)/2 over the choice of q and u, it holds that DLIP(x,u,Πq + b) = 1.
We can use the LIP extractor ELIP to extract a valid witness from any such Π′.

Remark 6.4 (inefficient simulator). As mentioned in Remark (5.9), Definition 5.8 can be weakened by
allowing the simulator to be inefficient. In such a case, we are able to obtain designated-verifier non-adaptive
preprocessing SNARGs (note the lack of the knowledge property), via essentially the same proof as the one
we gave above for Lemma 6.3.

Remark 6.5 (a word on adaptivity). One can strengthen Definition 5.8 by allowing the adversary to output
an additional (arbitrary) string y, which the simulator must be able to simulate as well. Interpreting this
additional output as the adversary’s choice of statement, a natural question is whether the strengthened
definition suffices to prove security against adaptively-chosen statements as well.

Unfortunately, to answer this question in the positive, it seems that a polynomial-size distinguisher
should be able to test whether a statement y output by the adversary is a true or false statement. This
may not be possible if y encodes an arbitrary NP statement (and for the restricted case of deterministic
polynomial-time computations, the approach we just described does in fact work.)

We stress that, while we do not know how to prove security against adaptively-chosen statements, we
also do not know of any attack on the construction in the adaptive case.

6.2 Publicly-Verifiable Preprocessing SNARKs from Algebraic LIPs

We show how to transform any LIP with degree (dQ, dD) = (poly(λ), 2) to a publicly-verifiable prepro-
cessing SNARK using linear-only one-way encodings with quadratic tests. The restriction to quadratic tests
(i.e., dD ≤ 2) is made for simplicity, because we only have one-way encoding candidates based on bilinear
maps. As noted in Remark (5.12), the transformation can in fact support any dD = poly(λ), given one-way
encodings with corresponding dD-degree tests.

Construction 6.6. Let {Fλ}λ∈N be a field ensemble (with efficient description and operations). Let C =
{C`}`∈N be a family of circuits. Let (PLIP, VLIP) be an input-oblivious two-message LIP for the relation RC ,
where for field Fλ, the verifier message is in Fmλ , the prover message is in Fkλ, and the knowledge error is
ε(λ); assume that the verifier degree is (dQ, dD) = (poly(λ), 2). Let E = (Gen,Enc,SEnc,Test,Add, ImVer)
be a linear-only one-way encoding scheme whose plaintext field, for security parameter λ, is Fλ. We define
a preprocessing SNARK (G,P, V) forRC as follows.

37

• G(1λ, 1`) invokes the LIP query algorithm QLIP(Fλ, 1`) to generate an LIP message q ∈ Fmλ along
with a secret state u ∈ Fm′ , generates pk ← Gen(1λ), lets ci ← Encpk(qi) for i ∈ [m], c̃i ←
SEncpk(ui) for i ∈ [m′], defines σ := (pk, c1, . . . , cm) and τ := (pk, c̃1, . . . , c̃m′), and outputs (σ, τ).
(Assume that both (σ, τ) contain ` and the description of the field Fλ).

• P (σ, x, w) invokes the LIP prover algorithm PLIP(Fλ, 1`, x, w) to get a matrix Π ∈ Fk×mλ representing
its message function, invokes the homomorphic Add to generate k encodings c′1, . . . , c

′
k for Π · q,

defines π := (c′1, . . . , c
′
k), and outputs π.

• V (τ, x, π) verifies that ImVerpk(c
′
i) = 1 for i ∈ [k], lets tx : Fk+m′ → Fη be the quadratic polynomial

given by DLIP(Fλ, 1`, x, · · ·), and accepts if and only if Test
(
pk, tx, c

′
1, . . . , c

′
k, c̃1, . . . , c̃m′

)
= 1.

Lemma 6.7. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is a linear-only one-way
encoding scheme. Then (G,P, V) from Construction 6.6 is a publicly-verifiable preprocessing SNARK with
knowledge error ε(λ) + negl(λ). Furthermore:
• time(G) = time(QLIP) + poly(λ) ·m,
• time(P) = time(PLIP) + poly(λ) · k2 ·m,
• time(V) = poly(λ) · time(DLIP),
• |σ| = poly(λ) ·m, |τ | = poly(λ) ·m′, and |π| = poly(λ) · k.

Proof sketch. Completeness easily follows from the completeness of (PLIP, VLIP) and the correctness of E .
Efficiency as claimed above is easy to see. We thus focus on establishing the knowledge property.

Let P ∗ be a malicious polynomial-size prover. As in the designated-verifier case, we construct its
knowledge extractor E in two steps: first invoke the linear-only extractor E′ for P ∗ (on the same input as
P ∗) to obtain an LIP affine transformation Π∗ “explaining” the encryptions output by P ∗, and then the LIP
extractorELIP (with oracle access to Π∗ and on input the statement chosen by P ∗) to obtain an assignment for
the circuit. We now argue that E works correctly. Note that this part must be different than the designated-
verifier case (see proof of Lemma 6.2) because it relies on poly(λ)-power one-wayness (see Definition 5.13)
of the linear-only encoding scheme instead of semantic security.

First, we claim that, except with negligible probability, whenever P ∗(σ, τ) produces a statement x and
proof c′ = (c′1, . . . , c

′
k) accepted by the verifier, the extracted Π∗ is such that tx(Π∗(q),u) = 0. Indeed, by

the linear-only property of E (see Definition 5.17), except with negligible probability, whenever the verifier
is convinced, it holds that c′ ∈ Encpk(Π

∗(q)) (i.e., c′ encodes the plaintext Π∗(q)); moreover, since the
verifier only accepts if Test

(
pk, tx, c

′, c̃
)

= 1, where c̃ = (c̃1, . . . , c̃m′) is the (standard-mode) encoding of
u, it indeed holds that tx(Π∗(q),u) = 0.

Second, we claim that, thinking about tx(Π∗(q(r)),u(r)) as a (dQdD)-degree polynomial in the ran-
domness r of the query algorithm QLIP, it holds that tx(Π∗(q(r)),u(r)) ≡ 0, i.e. it is vanishes everywhere;
in particular, Π∗ is a (perfectly) convincing LIP affine function. Indeed, if that is not the case, then, since t
is of degree dQ · dD = poly(λ), we can use the extractor E to break the poly(λ)-power one-wayness of the
linear only scheme (see Definition 5.13 and Definition 5.14).

6.3 Resulting Preprocessing SNARKs

We now state what preprocessing SNARKs we get by applying our different transformations. Let C = {C`}
be a circuit family where C` is of size s = s(`) and input size n = n(`). Table 2 summarizes (most) of the
preprocessing SNARKs obtained from our LIP constructions (from Sections 3.1 and 3.2) and computational
transformations (from Sections 6.1 and 6.2).

38

LIP starting point of # ciphertexts # ciphertexts verification adaptive or public or assumption
Thm. LIP construction (or encodings) (or encodings) time nonadaptive designated

in reference string in proof

3.3 Hadamard PCP O(s2) 4 n · poly(λ) nonadaptive designated Paillier TM
” ” ” 8 ” adaptive designated Paillier LOEC
” ” ” 8 ” adaptive public Bilinear LOED

3.4 QSPs of [GGPR13] O(s) 4 n · poly(λ) nonadaptive designated Paillier TM
” ” ” 8 ” adaptive designated Paillier LOEC
” ” ” 8 ” adaptive public Bilinear LOED

3.9 PCPs of [BSCGT13b] Õ(s) 1 n · poly(λ) nonadaptive designated Paillier TM
” ” ” 2 ” adaptive designated Paillier LOEC

Table 2: Summary of most of our preprocessing SNARK constructions. The gray-
row constructions achieve new features compared to previous work. Above, Paillier
TM stands for Paillier encryption assumed to satisfy Definition 5.8, Paillier LOEC
stands for a variant of Paillier encryption assumed to satisfy Definition 5.4, and Bi-
linear LOED stands for one-way encodings in bilinear groups that we assume satisfy
Definition 5.17. See Section 5.3 for a discussion about instantiations. Recall that adap-
tivity is a crucial property in order to benefit from the recursive composition techniques
of Bitansky et al. [BCCT13].

Zero-knowledge and ZAPs. As mentioned before, if the LIP is HVZK then the corresponding prepro-
cessing SNARK is zero-knowledge (against malicious verifiers in the CRS model), provided that linear
only-encryption (or one-way encoding) are rerandomizable; all of our candidates constructions are reran-
domizable.

As mentioned in Section 3.1.1, both of our LIP constructions based on LPCPs can be made HVZK
(either via the general transformation described in Appendix B or via construction-specific modifications
discussed in Appendix A). As for the LIP constructions based on traditional PCPs, we need to start with an
HVZK PCP. For efficient such constructions, see [DFK+92].

The zero-knowledge preprocessing SNARKs we obtain are arguments of knowledge where the witness
can be extracted without a trapdoor on the CRS; this is unlike what happens in typical NIZKs (based on
standard assumptions). This property is crucial when recursively composing SNARKs as in [BCCT13].

Finally, the zero-knowledge SNARKs we obtain are, in fact, perfect zero-knowledge. Moreover, for the
case of publicly-verifiable (perfect) zero-knowledge preprocessing SNARKs, the CRS can be tested, so that
(similarly to previous works [Gro10, Lip12, GGPR13]) we also obtain succinct ZAPs.

Acknowledgements

We thank Eli Ben-Sasson, Ran Canetti, Prahladh Harsha, Eran Tromer, and Daniel Wichs for helpful dis-
cussions and comments.

39

A Two LPCPs For Boolean Circuit Satisfaction Problems

We describe two ways of obtaining algebraic LPCPs for boolean circuit satisfaction problems (see Defini-
tion 4.5). For simplicity, in this section (as well as in Sections 3.1 and 3.2), we focus on relationsRC where
C is a fixed boolean circuit. All the discussions can be naturally extended to relations RC where C is a
uniform boolean circuit family.

A.1 An LPCP From The Hadamard Code

We begin with a very simple LPCP, which is the well-known Hadamard-based PCP of Arora et al. [ALM+98a]
(ALMSS), naturally extended to work over an arbitrary finite field F. Since we only require soundness
against linear proof oracles, there is no need to apply linearity testing and self-correction as in the original
PCP of ALMSS. This makes the construction of the LPCP and its analysis even simpler, and has the advan-
tage of yielding knowledge error O(1/|F|) with a constant number of queries. The resulting LPCP verifier
will have degree (2, 2), so that the LPCP is algebraic.

We now formulate the properties of the simplified version of the Hadamard-based PCP in the arithmetic
setting:

Claim A.1. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit of size s. There is a
3-query LPCP forRC with knowledge error 2/|F|, query length s+ s2, and degree (2, 2). Furthermore:
• the LPCP prover PLPCP is an arithmetic circuit of size O(s2);
• the LPCP query algorithm QLPCP is an arithmetic circuit of size O(s2);
• the LPCP decision algorithm DLPCP is an arithmetic circuit of size O(n).

Construction and analysis. It is convenient to formulate our variant of the ALMSS construction for a
relationR(x,w) defined by an arithmetic (rather than boolean) circuit over F. In the following, an arithmetic
circuit may contain addition gates of unbounded fan-in and multiplication gates of fan-in 2; both types of
gates can have unbounded fan-out. A sequence of one or more nodes (gates or inputs) defines the output of
the circuit. The size of the circuit is defined as the total number of nodes. We say that an arithmetic circuit
C : Fn × Fh → F` is satisfied on a given input if all of the outputs are 0; that is, the corresponding relation
is defined asRC := {(x,w) ∈ Fn × Fh : C(x,w) = 0`}.

The standard problem for boolean circuit satisfaction can be easily reduced to the problem of arithmetic
circuit satisfaction with only constant overhead.

Claim A.2 (from boolean circuit satisfaction to arithmetic circuit satisfaction). Let F be a finite field, n
an input length parameter, and h an output length parameter. There exist efficient (in fact, linear-time)
transformations (arith, inp,wit,wit−1) such that, for any boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}
(with AND, OR, and NOT gates) and input x ∈ {0, 1}n, the following conditions hold:

• arith(C) outputs an arithmetic circuit C ′ : Fn+1 × Fh → Fh+1;

• inp(x) outputs an input x ∈ Fn+1;

• there is w ∈ {0, 1}h s.t. C(x,w) = 1 if and only if there is w ∈ Fh s.t. C ′(x,w) = 0h+1;

• if (x,w) ∈ RC then wit(C, x,w) outputs a witness w ∈ Fh such that (x,w) ∈ RC′;

• if (x,w) ∈ RC′ then wit−1(C ′,x,w) outputs a witness w ∈ {0, 1}h such that (x,w) ∈ RC .

40

Proof sketch. Let x = (−1, x1, . . . , xn). The circuit C ′(x,w) emulates the computation of C on (x,w),
using the constant −1 to emulate OR and NOT gates, and treating the entries of w as bits of w. (For
instance, NOT(z) can be computed as 1 + (−1) · z.) The first output of C ′ is equal to 1− C(x,w) (for all
w ∈ {0, 1}h). The remaining h outputs of C ′ are used to ensure that any satisfying w ∈ Fh is a bit vector.
This is done by outputting wi · (1− wi) for i ∈ {1, . . . , h}.

We now proceed to describe the construction of the LPCP for an arithmetic circuit C : Fn × Fh → F`.
We let zi denote the value of the i-th wire of C given input x ∈ Fn and witness w ∈ Fh, where we assume
that zi = xi for i ∈ {1, . . . , n} and zs−`+1, . . . , zs are the values of the output wires (which are supposedly
0). The honest prover uses a linear oracle π whose coefficient vector includes z1, . . . , zs, and zi · zj for all
i, j ∈ {1, . . . , s}. The verifier needs to check that: (1) the coefficient vector is consistent with itself (namely,
the entry which supposedly contained zi · zj is indeed the product of the entries containing zi and zj); (2)
zi = xi for i ∈ {1, . . . , n}; (3) zs−i = 0 for i ∈ {0, . . . , ` − 1}; and (4) for every gate, the given value for
its output wire is consistent with the given values for its input wires.

The first condition can be verified with two queries: the first query asks for a random linear combination
of the zi and the second query asks for the linear combination of the zi · zj that corresponds to the square of
the first query. The verifier checks that the second answer is the square of the first answer. It follows from
the Schwartz–Zippel Lemma (cf. Lemma 2.1) that if condition (1) is violated then this test will fail except
with at most 2/|F| probability. Conditions 2,3,4 are tested together using a single query by taking a random
linear combination with coefficient vector r of the left hand sides of the following equations:

• zi = xi for i = 1, . . . , n;

• zj = 0 for j = s− (`− 1), . . . , s;

•
(∑k

j=1 zij
)
− zk = 0 for each addition gate with input wires i1, . . . , ik and output wire k;

• zi · zj − zk = 0 for each multiplication gate with input wires i, j and output wire k.

Note that this random linear combination can be efficiently transformed into a random linear combination
of the coefficients zi and zi · zj . The verifier accepts if the answer is equal to the corresponding linear
combination of the right hand side, namely to

∑n
i=1 rixi. Assuming that condition (1) is satisfied, this test

fails with probability at most 1/|F|.
Overall, we get a 3-query LPCP with knowledge error 2/|F| = O(1/|F|), query length s+ s2 = O(s2)

and degree (2, 2). The construction is summarized as follows:

Construction A.3. Let F be a finite field and C : Fn × Fh → F` an arithmetic circuit over F of size s.

LPCP prover algorithm PLPCP. Given (x,w) ∈ Fn × Fh such that C(x,w) = 1, compute the values
z1, . . . , zs of all wires in C(x,w), and output the linear function π : Fs+s2 → F defined by the
coefficients zi for all i ∈ [s] and zi · zj for all i, j ∈ [s].

LPCP query algorithm QLPCP. The query algorithm QLPCP has hardcoded in it:

• A matrix AC ∈ Fs×(s+s2)

• A vector bC ∈ Fs−n

Both AC and bC can be computed efficiently (in fact, in linear time) from C. The query algorithm
QLPCP outputs queries q1, q2, q3 ∈ Fs+s2 that are computed as follows:

41

1. sample a random vector r = (r1, r2) ∈ F2s; denote by rx the first n coordinates of r1 and by
rC the last s− n coordinates of r1;

2. set q1 := r1 ·AC;

3. the first s elements of q2 is the vector r2 and the last s2 elements are 0;

4. the first s elements of q3 are 0 and the last s2 element are r2[i] · r2[j] for all i, j ∈ [s].

Additionally the query algorithm QLPCP outputs the state information u = (uC , rx) where uC =
〈rC , bC〉.

LPCP decision algorithm DLPCP. Given input x, state u = (uC , rx), and answers a1, a2, a3 ∈ F, verify
that

tx(u, a1, a2, a3) :=
(
a1 − (uC + 〈rx,x〉) , a2

2 − a3

)
= (0, 0) .

Remark A.4 (HVZK variant). To make the LPCP of Claim A.1 an HVZK LPCP, we could apply the
general transformation presented in Appendix B. However, there is a transformation specific to the LPCP
of Claim A.1 that introduces almost no overhead. Essentially, the prover can simply concatenate a random
element to the linear function he generates; this can be interpreted as adding a dummy wire to the circuit
and assigning to it a random value; the verifier then reasons in terms of this new circuit. In fact, the idea we
just described is a very simple instance of the transformation in Appendix B, which generalizes it to work
for any LPCP.

A.2 An LPCP From Quadratic Span Programs

Next, we note that an LPCP with linear query algorithm and quasilinear prover algorithm can be easily
obtained by going through the quadratic span programs of Gennaro et al. [GGPR13]; this gain is at the
expense of the degree of the query algorithm which now becomes O(s) instead of 2.

Claim A.5. Let F be a finite field andC : {0, 1}n×{0, 1}h → {0, 1} a boolean circuit of size s. There is a 3-
query LPCP forRC with knowledge errorO(s/|F|), query lengthO(s), and degree (O(s), 2). Furthermore:
• the LPCP prover PLPCP is an arithmetic circuit of size Õ(s);
• the LPCP query algorithm QLPCP is an arithmetic circuit of size O(s);
• the LPCP decision algorithm DLPCP is an arithmetic circuit of size O(n).

Construction and analysis. We present the definition of a quadratic span program satisfiability problem,
based on the definition of a strong quadratic-span program (QSP) in [GGPR13].

Definition A.6. Let F be a finite field. The QSP satisfiability problem over F of a (strong) QSP Q =
(n,m, d,V,W, t), where V =

(
vi(z)

)
0≤i≤m and W =

(
wi(z)

)
0≤i≤m are two vectors of polynomials of

degree d over F and t is a polynomial over F, is the relation:

RQ :=

{(
x, (a, b,h)

)
: t(z) ·

(
d−1∑
i=0

hi · zi
)

=

(
v0(z) +

n∑
i=1

xi · vi(z) +
m−n∑
i=1

ai · vi+n(z)

)
·
(
w0(z) +

m∑
i=1

bi · wi(z)
)}

,

where x ∈ Fn, a ∈ Fm−n, b ∈ Fm, and h ∈ Fd.

42

Gennaro et al. [GGPR13] have shown that there is a very efficient reduction from boolean circuit satis-
fiability problems to QSP satisfiability problems:

Claim A.7. Let F be a field. There exist transformations (qsp, inp,wit,wit−1) such that, for any boolean
circuit C : {0, 1}n × {0, 1}h → {0, 1} and input x ∈ {0, 1}n, the following conditions hold:

• qsp(C) outputs a QSP Q where m = O(|C|), d = O(|C|), and n′ = O(n); moreover, Q is sparsely
represented ;

• inp(x) outputs an input x ∈ Fn′;

• there is w ∈ {0, 1}h s.t. C(x,w) = 1 if and only if there is w s.t. (x,w) ∈ RQ;

• if (x,w) ∈ RC then wit(C, x,w) outputs a witness w such that (x,w) ∈ RQ;

• if (x,w) ∈ RQ then wit−1(Q,x,w) outputs a witness w ∈ {0, 1}h such that (x,w) ∈ RC .

Moreover, qsp, inp,wit−1 run in linear time and wit runs in quasilinear time.

We now give a construction of an LPCP for a QSP satisfiability problem:

Construction A.8. Let F be a field and Q = (n,m, d,V,W, t) a (strong) QSP.

LPCP prover algorithm PLPCP. Given (x, (a, b,h)) such that (x, (a, b,h)) ∈ RQ, output the linear func-
tion π : F2m−n+d → F defined by π := (a, b,h) (i.e., the concatenation of the coefficients vectors).

LPCP query algorithm QLPCP. Select a random point r ∈ F and output the queries q1, q2, q3 ∈ F2m−n+d

defined as follows:

• the first m− n elements of q1 are vi(r) for all n < i ≤ m and the last m+ d element are 0;

• the first m− n and the last d elements of q2 are 0 and the remaining m elements are wi(r) for
all 0 < i ≤ m;

• the first (m− n) +m elements of q3 are 0 and the last d elements are ri for all 0 ≤ i < d.

Additionally the algorithm outputs the state information u := ({vi(r)}0≤i≤n , w0(r), t(r)) ∈ Fn+2.

LPCP decision algorithm DLPCP. Given input x, state u = ({vi(r)}0≤i≤n , w0(r), t(r)), and answers
a1, a2, a3, verify that

tx(u, a1, a2, a3) :=

(
v0(r) +

n∑
i=1

xi · vi(r) + a1

)
· (w0(r) + a2)− a3 · t(r) = 0 .

We now prove that Construction A.8 has the desired properties. Correctness follows from the construc-
tion. Next, fix a linear function π∗ : F2m−n+d → F and view it as π∗ = (a∗, b∗,h∗) for some a∗ ∈ Fm−n,
b∗ ∈ Fm, and h∗ ∈ Fd. Suppose that V π

∗
LPCP(x) accepts with more than 2d/|F| probability. By construction,

we have that:

Pr
r←F

[(
v0(r) +

n∑
i=1

xi · vi(r) +
m−n∑
i=1

a∗i · vi+n(r)

)
·
(
w0(r) +

m∑
i=1

b∗i · wi(r)
)
−
(
d−1∑
i=0

h∗i · ri
)
· t(r) = 0

]
>

2d

|F| .

43

By the Schwartz–Zippel Lemma (cf. Lemma 2.1) we deduce that:(
v0(z) +

n∑
i=1

xi · vi(z) +
m−n∑
i=1

a∗i · vi+n(z)

)
·
(
w0(z) +

m∑
i=1

b∗i · wi(z)
)

=

(
d−1∑
i=0

h∗i · zi
)
· t(z) .

We conclude that (x, (a∗, b∗,h∗)) ∈ RQ. We thus have a 3-query LPCP for RQ with knowledge error
2d/|F|, query length 2m − n + d, and degree (d, 2). Furthermore, the LPCP prover PLPCP runs in time
O(m + d), the LPCP query algorithm QLPCP runs in time O(m + d) (since it only has to produce random
evaluations of polynomials), and the LPCP decision algorithm DLPCP runs in time O(n).

Invoking Claim A.7, we obtain 3-query LPCP forRC , whereC : {0, 1}n×{0, 1}h → {0, 1} is a boolean
circuit of size s, with knowledge error O(s/|F|), query length O(s), and degree (O(s), 2). Furthermore, the
LPCP prover PLPCP runs in time Õ(s), the LPCP query algorithm QLPCP runs in time O(s), and the LPCP
decision algorithm DLPCP runs in time O(n).

Remark A.9 (HVZK variant). To make the LPCP of Claim A.5 an HVZK LPCP, we could apply the general
transformation presented in Appendix B. However, Gennaro et al. [GGPR13] give a transformation for the
specific case of QSPs that introduces almost no overhead. Their transformation is rather different from our
general transformation, and exploits special features of QSPs. At a very high-level, we first pad each of the
LPCP answers with a random field element, and then add terms to the proof that allow a verifier to cancel
the noise, but without leaking any further information. In particular, in our transformation, the verifier has to
make sure that these additional terms are properly structured, and doing so requires additional tests. Instead,
[GGPR13] use the special QSP structure: instead of padding the LPCP answers with random field elements,
they add randomized factors of the target polynomial t to the answers, and this is already sufficient to force
the prover to stick to the proper structure, and does not require additional structure tests.

B HVZK For LPCPs With Low-Degree Decision Algorithm

We describe a general transformation that takes any LPCP with dD = 2 to a corresponding LPCP that is
HVZK, with only a small overhead in parameters. (With additional work, the transformation can in fact be
extended to work for dD = O(1).)

Theorem B.1. There exists an efficient compiler that takes any LPCP (PLPCP, VLPCP) with dD = 2 into an
LPCP (P ′LPCP, V

′
LPCP) with the following properties:

• if (PLPCP, VLPCP) has knowledge error ε then (P ′LPCP, V
′
LPCP) has knowledge error ε+O(1/|F|);

• (P ′LPCP, V
′
LPCP) is O(1/|F|)-statistical HVZK (and can be made perfect HVZK if V ′LPCP is allowed to

sample its randomness from F− {0} instead of F);

• if (PLPCP, VLPCP) has query length m, k queries, private state of length m′, η test polynomials, and
degree (dQ, 2), then (P ′LPCP, V

′
LPCP) has query length O(ηk4(m+m′)), O(k+η) queries, private state

of length O(k2m′), O(η) test polynomials, and degree (dQ, 2).

Remark B.2 (parameters). Typically (and this is the case for both of the LPCP constructions of Section A),
k and η are constants and m′ < m (e.g., m is proportional to the size of the circuit to be verified and m′ is
proportional to the input size of the circuit). For such typical choices, (P ′LPCP, V

′
LPCP) has the same parameters

as (PLPCP, VLPCP), up to constant factors.

44

Of course, because the transformation guaranteed by Theorem B.1 is generic, optimizations are often
possible in specific cases to, e.g., reduce the number of queries. For instance, the two LPCP constructions
described in Appendix A have HVZK variants with almost no overhead (see Remarks A.4 and A.9).

The rest of this section contains the proof of Theorem B.1. Let us begin with the high-level idea.

The high-level idea. The LPCP prover adds to each of the original LPCP answers ai a random element
ξi; clearly, the distribution of these new answers is independent of the witness used by the prover, and thus
the new answers are HVZK. Unfortunately, this modification allows the LPCP verifier to only compute a
noisy evaluation of the test polynomial, namely tx(u,a + ξ), when instead the verifier needed a noiseless
evaluation. To recover soundness without breaking HVZK, the verifier needs to learn the difference ∆ =
tx(u,a+ξ)− tx(u,a), but nothing else. We show how the prover can do this by adding suitable crossterms
to the linear function, and letting the verifier test that the new linear function, which includes these cross
terms, has the correct “structure”. We now concretize this high-level idea by proceeding in three steps.

Step 1: soundness against provers respecting quadratic tensor relations. In our transformation, an
honest LPCP proof π is mapped to a new proof π′ = (π1, . . . ,πc) that must satisfy a set T of quadratic
tensor relations; a quadratic tensor relation is a triple (i, j, k) ∈ [c]3, that corresponds to the requirement
πi = πj ⊗ πk.9 Thus we can write:

T = {πi` = πj` ⊗ πk`}
β
`=1 ,

where a ⊗ b = (ai · bj)i,j is the tensor product of vectors a and b. We say that β is the size of T . In our
construction, T is independent of the input x, so we focus our attention to this case.

We begin by showing that any LPCP that is secure against T -respecting provers (for some given T) can
be transformed into a corresponding LPCP against arbitrary provers, with a small overhead in parameters
and while maintaining HVZK. For a given set of quadratic tensor relations T , we say that an LPCP has
soundness (or knowledge) error ε against T -respecting provers if it has soundness (or knowledge) error ε
against proofs that satisfy all the quadratic tensor relations in T .

Claim B.3. There exists an efficient LPCP transformation T such that, for any set of quadratic tensor
relations T , the following properties hold:

• Security: If (PLPCP, VLPCP) is an LPCP for a relation R with knowledge error ε against T -respecting
provers, then (P ′LPCP, V

′
LPCP) := T(T , PLPCP, VLPCP) is an LPCP forR with knowledge error ε+O(1/|F|).

• Zero-Knowledge Preservation: If (PLPCP, VLPCP) is δ-statistical HVZK then (P ′LPCP, V
′
LPCP) is (δ+ 1/|F|)-

statistical HVZK. (If V ′LPCP is allowed to sample randomness from F − {0} instead of F then (P ′LPCP,
V ′LPCP) can be made δ-statistical HVZK.)

• Efficiency: If T has size β, (PLPCP, VLPCP) has query lengthm, k queries, η test polynomials, and degree
(dQ, dD), then (P ′LPCP, V

′
LPCP) has query length O(m), k + O(β) queries, η + β test polynomials, and

degree (dQ,max {dD, 2}).

Proof sketch. We sketch the transformation T and an argument for its correctness; a detailed description of
the transformation can be found after the proof sketch, in Construction B.4.

9More precisely, T must also specify c ∈ N and how to parse the vector π′ into component vectors π1, . . . ,πc. We notationally
ignore this small detail. We assume that the same i cannot appear in more than one triple and that each vector πi has at least two
coordinates. Note that there cannot be “cycles” such as (i, j, k) and (k, j′, i) both being in T .

45

The transformation leverages the fact that any quadratic tensor relation can be checked with only 3
queries and a quadratic decision predicate. Concretely, given two vectors a and b and another vector c, to
test whether c = a⊗ b, we can sample two random vectors ra and rb, and test whether

〈c, ra ⊗ rb〉 = 〈a, ra〉 · 〈b, rb〉 .

By the Schwartz–Zippel Lemma (see Lemma 2.1), if the quadratic tensor relation does not hold, then the
test passes with probability at most 2/|F|.

Thus, letting π∗ = (π1, . . . ,πc) be a potentially malicious proof, if we want to test whether π∗ satisfies
the set of quadratic tensor relations T , we proceed as follows. For each (i, j, k) ∈ T , generate queries
qi, qj , qk to π∗ so that

〈π∗, qi〉 = 〈πi, rj ⊗ rk〉〈
π∗, qj

〉
= 〈πj , rj〉

〈π∗, qk〉 = 〈πk, rk〉

where rj and rk are random vectors of suitable length,10 and then test whether 〈π∗, qi〉 =
〈
π∗, qj

〉
·〈π∗, qk〉.

While the solution described in the previous paragraph does provide suitable security and efficiency
guarantees, it does not preserve HVZK, because the additional “structure” queries may reveal information
about the witness. To fix this problem, we proceed as follows. For each quadratic tensor relation c = a⊗b,
we modify the part of the proof corresponding to it, as well as the verifier’s “structure” queries for it.
Specifically, we extend the vectors a,b, c to a′ = (a|ξa), b′ = (b|ξb), c′ = a′ ⊗ b′, where ξa and
ξb are random field elements; similarly, the verifier’s “structure” queries ra, rb, ra ⊗ rb are extended to
r′a = (ra|ra), r′b = (rb|rb), r′a ⊗ r′b, where ra and rb are random field elements. The two query answers
〈a′, r′a〉 and

〈
b′, r′b

〉
are now truly random conditioned on ra and rb being non-zero, and hence can be

simulated.11 In addition, 〈c′, r′a ⊗ r′b〉 can be simulated by taking the product of the simulated answers.
As for the queries of the original LPCP, these can be appropriately padded with zeros so that the answers
to them are not affected by the changes to the proof; the answers to these queries are simulatable, when
assuming that the original LPCP is HVZK. Overall, the modification to preserve HVZK does not change
the number of queries, and increases their length m by at most a factor of 1 + 1

m < 2.
This concludes the proof sketch for Claim B.3.

Construction B.4 (transformation for Claim B.3). Let (PLPCP, VLPCP) be an LPCP forR that is secure against
T -respecting provers, for some set of quadratic tensor relations T of size β. Parse a proof π as follows:

π =

π1
...
πα
πα+1

...
πα+β

=

π1
...
πα

πj1 ⊗ πk1
...

πjβ ⊗ πkβ

,

10If the same j or k appears in multiple triples in T , there is no need to sample a new random vector.
11 Here is where we lose 1/|F| in statistical distance between the honest distribution and the simulated distribution. If, however,

the honest verifier could sample randomness from the set F− {0} (instead of F as required by the definition), then this loss can be
avoided at the expense of an additional 1/|F| factor in the knowledge error. (Note that mapping the uniform distribution on F to the
uniform distribution on F − {0} is not a low-degree operation so, if we want to ensure that d′Q = dQ, then we cannot simply let
V ′LIP do this, but we must supply him with the uniform distribution on F− {0}.)

46

where c = α+β is the number of components in π and (α+ 1, j1, k1), . . . , (α+β, jβ, kβ) are the β triples
in T . (We can always relabel triples in T so that the β components of π constrained by a tensor relation in
T appear after any unconstrained component.) Note that each of j1, . . . , jβ, k1, . . . , kβ can be any index in
[α+ β] (always subject to the condition that the are no “cycles” in T).

Construct the LPCP (P ′LPCP, V
′
LPCP) as follows.

• The prover P ′LPCP. Given (x,w) ∈ R, P ′LPCP invokes PLPCP(x,w) to obtain a proof π as above, samples
random ξ ∈ Fα+β , and outputs the proof π′ defined as follows:

π′ =

π′1
...
π′α
π′α+1

...
π′α+β

=

(π1|ξ1)
...

(πα|ξα)
(π′j1 ⊗ π′k1 |ξα+1)

...
(π′jβ ⊗ π′kβ |ξα+β)

.

Let us explain the mapping from π to π′ in words. Let us assume without loss of generality that the
triples (α+ 1, j1, k1), . . . , (α+β, jβ, kβ) are labeled so that they are in a “topological order”: namely,
if ` < `′ then it cannot be that j` or k` is equal to α + `′. (A topological order exists because there
are no cycles in T .) We first pad each of the components π1, . . . ,πα with a random element to obtain
π′1, . . . ,π

′
α. Then, for ` = 1, . . . , β (in this order), we pad π′j` ⊗ π′k` with a random element to obtain

π′α+`; because of the topological order, when defining π′α+`, we have already defined both π′j` and π′k` .

• The query algorithm Q′LPCP. The query algorithm Q′LPCP invokes QLPCP to obtain queries q1, . . . , qk and
a state u, and then produces and outputs (along with u) new queries

q
(1)
1 , . . . , q

(1)
k , q(2)

s1 , . . . , q
(2)
sγ , q

(3)
α+1, . . . , q

(3)
α+β ,

where s1, . . . , sγ are the (distinct) indices in the set {j}(i,j,k)∈T ∪ {k}(i,j,k)∈T ; note that γ ≤ 2β. The
new queries are defined as follows.

– The queries q(1)
1 , . . . , q

(1)
k correspond to the original queries q1, . . . , qk to π. In other words, we

construct each q(1)
j so that 〈

π′, q
(1)
j

〉
=
〈
π, qj

〉
.

Since π′ contains π (and some new terms), each q(1)
j can be obtained from qj via suitable padding

with zeros (in the locations corresponding to the new terms).

– The remaining queries are for testing the tensor structure in a way that preserves HVZK:

∗ For ` ∈ [γ], q(2)
s` is constructed so that

〈
π′, q(2)

s`

〉
=
〈
π′s` , (r

(2)
s`
|r(2)
s`

)
〉

=

〈
πs` , r

(2)
s`

〉
+ ξs`r

(2)
s` if s` ∈ {1, . . . , α}〈

π′js`−α
⊗ π′ks`−α , r

(2)
s`

〉
+ ξs`r

(2)
s` if s` ∈ {α+ 1, . . . , α+ β}

,

where r
(2)
s` is a random vector (of suitable length) and r(2)

s` is a random field element.

47

∗ For ` ∈ [β], q(3)
α+` is constructed so that〈

π′, q
(3)
α+`

〉
=
〈
π′α+`, ((r

(2)
j`
|r(2)
j`

)⊗ (r
(2)
k`
|r(2)
k`

)|r(3)
α+`)

〉
=
〈
π′j` ⊗ π

′
k`
, (r

(2)
j`
|r(2)
j`

)⊗ (r
(2)
k`
|r(2)
k`

)
〉

+ξα+`r
(3)
α+` ,

where r(3)
α+` is a random field element.

• The decision algorithmD′LPCP. The decision algorithmD′LPCP invokesDLPCP on the answers a(1)
1 , . . . , a

(1)
k

and checks that a(3)
α+1 = a

(2)
j1
a

(2)
k1
, . . . , a

(3)
α+β = a

(2)
jβ
a

(2)
kβ

.

Step 2: from higher-degree tensor relations to quadratic tensor relations. The notion of a set of tensor
relations introduced in the previous step can of course be extended to relations of more than 2 vectors. In
general, a set of tensor relations T is a set of tuples of potentially different length; we say that a vector
π = (π1, . . . ,πc) satisfies a set of tensor relations in T if for every tuple (i, j, k, . . . , z) ∈ T it holds that
πi = πj ⊗ πk ⊗ · · · ⊗ πz . (As before, we require tuples in T to not form cycles, etc.; see Footnote 9.)

We describe a (zero-knowledge preserving) transformation that maps any LPCP that is secure against
T -respecting provers, for some T containing tensor relations that are at most cubic, into a corresponding
LPCP that is secure against T ′-respecting provers, for a corresponding set of quadratic tensor relations T ′.
(While not needed here, the transformation can be extended to deal with arbitrary sets of tensor relations;
see Remark (B.6) below.)

Claim B.5. There exists an efficient LPCP transformation Q such that, for any set of at-most-cubic tensor
relations T , the following properties hold:

• Security: If (PLPCP, VLPCP) is an LPCP for a relation R with knowledge error ε against T -respecting
provers, then (T ′, P ′LPCP, V ′LPCP) := Q(T , PLPCP, VLPCP) is an LPCP forR with knowledge error ε against
T ′-respecting provers, where T ′ is a set of quadratic tensor relations.

• Zero-Knowledge Preservation: If (PLPCP, VLPCP) is δ-statistical HVZK then so is (P ′LPCP, V
′
LPCP). (In

particular, perfect HVZK is preserved.)

• Efficiency: If (PLPCP, VLPCP) has query length m, k queries, η test polynomials, and degree (dQ, dD),
then (P ′LPCP, V

′
LPCP) has query length O(m), k queries, η test polynomials, and degree (dQ, dD). Fur-

thermore, if T has size β then T ′ has size O(β).

Proof sketch. The idea is to simply split every cubic tensor into two quadratic tensors. Namely, for every
tensor relation πi = πj ⊗ πk ⊗ π` in T , we let T ′ require the two tensor relations πi′ = πj ⊗ πk and
πi = πi′ ⊗ π`, for some new index i′. With this modification the length of the proof at most doubles and,
moreover, the size of T ′ is at most 2β = O(β).

While it is possible to test cubic tensor relations “directly”, in a manner that is analogous to the way
we test quadratic tensor relations in the proof of Claim B.3, doing so requires decision predicates of cubic
degree, which we wish to avoid. Claim B.5 thus lets us move from cubic tensor relations to quadratic tensor
relations before any tensor relations are tested.

Remark B.6. Claim B.5 can be extended to handle any set of tensor relations T , and not only quadratic
ones. Concretely, a tensor relation over d vectors can be split into (d − 1) quadratic tensor relations. The
corresponding parameter changes to the new proof length and size of T ′ can be easily deduced.

48

Step 3: from LPCP to HVZK LPCP against tensor-respecting provers. We describe a transformation
that maps any LPCP into a corresponding perfect HVZK LPCP, with similar parameters, that is secure
against T -respecting provers for a certain set of at-most-cubic tensor relations T .

Claim B.7. There exists an efficient LPCP transformation Z with the following properties:

• Security: If (PLPCP, VLPCP) is an LPCP for a relationR with knowledge error ε and dD = 2, then (P ′LPCP,
V ′LPCP) := Z(PLPCP, VLPCP) is a perfect HVZK LPCP for R with knowledge error ε + O(1/|F|) against
T -respecting provers for some set of at-most-cubic tensor relations T .

• Efficiency: If (PLPCP, VLPCP) has query length m, k queries, state length m′, η test polynomials, and
degree (dQ, 2), then (P ′LPCP, V

′
LPCP) has query length O(ηk4(m + m′)), k + η + 1 queries, state length

O(k2m′), η + 1 test polynomials, and degree (dQ, 2). Furthermore, T has size β = 3η.

Proof. Recall that, for an input x, we denote by tx(u1, . . . , um′ , a1, . . . , ak) the (quadratic) test polynomial
of the decision algorithmDLPCP(x, · · ·). In general, tx is a η-dimensional multivariate polynomial; however,
to simplify notation, we describe our construction for the case η = 1 and then, in Remark (B.9), explain
how the construction can be extended to the case η > 1 (and what is the effect on the parameters).

Define the padding polynomial (of tx) to be:

∆tx(u1, . . . , um′ , a1, . . . , ak, ξ1, . . . , ξk) = tx(u1, . . . , um′ , a1 + ξ1, . . . , ak + ξk)− tx(u1, . . . , um′ , a1, . . . , ak) .

Note that ∆tx can be expanded to:

∆tx(u1, . . . , um′ , a1, . . . , ak, ξ1, . . . , ξk) =
∑

(i,j)∈[m′]×[k]

cu⊗ξx,i,juiξj +
∑

(i,j)∈[k]×[k]

ca⊗ξx,i,jaiξj +
∑

(i,j)∈[k]×[k]

cξ⊗ξx,i,jξiξj ,

for some coefficients cu⊗ξx,i,j , c
a⊗ξ
x,i,j , and cξ⊗ξx,i,j ; we denote the corresponding coefficients vectors by

cu⊗ξx =
(
cu⊗ξx,i,j

)
(i,j)∈[m′]×[k]

, ca⊗ξx =
(
ca⊗ξx,i,j

)
(i,j)∈[k]×[k]

, cξ⊗ξx =
(
cξ⊗ξx,i,j

)
(i,j)∈[k]×[k]

.

Construction B.8. Construct (P ′LPCP, V
′
LPCP) from (PLPCP, VLPCP) as follows:

• The prover P ′LPCP. Given (x,w) ∈ R, P ′LPCP invokes PLPCP(x,w) to obtain a proof π ∈ Fm, samples a
random ξ ∈ Fk, and outputs the proof π′ defined as follows:

π′ =

π
ξ

cu⊗ξx

ca⊗ξx

cξ⊗ξx

ξ ⊗ cu⊗ξx

π ⊗ ξ ⊗ ca⊗ξx

ξ ⊗ ξ ⊗ cξ⊗ξx

.

In other words, π′ has 8 component vectors, and we can define T as the set

T := {(6, 2, 3), (7, 1, 2, 4), (8, 2, 2, 5)} .

49

• The query algorithm Q′LPCP. The query algorithm Q′LPCP invokes QLPCP to obtain queries q1, . . . , qk and
a state u, and then produces new queries q′1, . . . , q

′
k, q
′
k+1, q

′
k+2. Specifically:

– For each j ∈ [k], the prefix of q′j is qj , and the suffix is a unit vector ej , which is 1 in the j-th
position and zero otherwise. In other words, we construct q′j so that:〈

π′, q′j
〉

=
〈
π, qj

〉
+ ξj .

– The vector q′k+1 takes a random combination of the elements cu⊗ξx , ca⊗ξx , cξ⊗ξx . In other words,
q′k+1 consists of a random vector r padded with zeros so that〈

π′, q′k+1

〉
=
〈(

cu⊗ξx , ca⊗ξx , cξ⊗ξx

)
, r
〉
.

– The vector q′k+2 consists of several copies of each of q1, . . . , qk and u, and of zeros, so that〈
π′, q′k+2

〉
= ∆tx(u, 〈π, q1〉 , . . . , 〈π, qk〉 , ξ) = ∆tx(u,a, ξ) .

As for the state, Q′LPCP outputs u′ = (u, r).

• The decision algorithm D′LPCP. Given u′ = (u, r) and answers
(
a′1, . . . , a

′
k+2

)
, D′LPCP checks that

tx(u, a′1, . . . , a
′
k) = a′k+2 and a′k+1 =

〈(
cu⊗ξx , ca

′⊗ξ
x , cξ⊗ξx

)
, r
〉

, where tx is the test polynomial of DLPCP(x, · · ·).

Remark B.9 (multi-dimensional test polynomials). As mentioned above, to simplify notation, we have
defined the padding polynomial and given Construction B.8 for the case η = 1. For the general case of
η-dimensional polynomial tx with η > 1, we proceed as follows. Instead of defining a single padding poly-
nomial, we define η padding polynomials ∆tx,i, each with its own coefficients ci =

(
cu⊗ξx,i , c

a⊗ξ
x,i , c

ξ⊗ξ
x,i

)
.

Accordingly, the third, fourth, and fifth row of the proof π′ are extended to η corresponding rows; similarly
for the sixth, eight, and tenth row of π′. The query q′k+1 is modified to include η random vectors r1, . . . , rη;
indeed, the linear combination checking the correctness of c1, . . . , cη can be taken simultaneously for all of
the ci (rather than for each ci separately). The last query q′k+2 is replaced by η queries q′k+2, . . . , q

′
k+η+1,

each according to the appropriate ∆tx,i.

First, note that the degree of (P ′LPCP, V
′
LPCP) is the same as that of (PLPCP, VLPCP): we have only introduced

linear operations to both query and decision polynomials.
Next, let us argue that (P ′LPCP, V

′
LPCP) has the claimed knowledge error. Assuming that the vectors

(cu⊗ξx , ca⊗ξx , cξ⊗ξx) appear correctly in the proof π′ and the prover is T -respecting, then (P ′LPCP, V
′
LPCP) has

the exact same knowledge error as in (PLPCP, VLPCP), because then the verifier exactly computes tx(u,a). If
instead the vectors (cu⊗ξx , ca⊗ξx , cξ⊗ξx) are not computed properly, then the random linear combination test
will fail except with probability 1/|F|. Thus, the knowledge error of (P ′LPCP, V

′
LPCP) is at most ε+ 1/|F|.

To see that (P ′LPCP, V
′
LPCP) is perfect HVZK, note that the honest verifier does not learn from an honest

proof any information except for the fact that tx(u,a) = tx(u, 〈π, q1〉 , . . . , 〈π, qk〉) = 0. More formally,
the answers a′1, . . . , a

′
k can all be simulated by random independent elements; the answer a′k+1 can be sim-

ulated by just taking a random combination of (cu⊗ξx , ca⊗ξx , cξ⊗ξx); and the difference a′k+2 = ∆tx(u,a, ξ)
can be simulated simply as tx(u,a′), where u is an honestly generated state for the verifier and a′ are the
simulated answers a′1, . . . , a

′
k.

Combining Claim B.7, Claim B.5, and Claim B.3 completes the proof of Theorem B.1.

50

C Multi-Theorem Designated-Verifier SNARKs via Strong Knowledge

A desirable property of SNARKs is the ability to generate the reference string σ, once and for all, and
then reuse it to produce polynomially-many proofs (potentially by different provers). Doing so is especially
desirable for preprocessing SNARKs, where generating σ afresh is expensive.

However, being able to securely reuse σ requires security also against provers that have access to a proof-
verification oracle. For publicly-verifiable SNARKs, this multi-theorem proof of knowledge is automatically
guaranteed. For designated-verifier SNARKs, however, multi-theorem proof of knowledge needs to be
required explicitly as an additional property. Intuitively, this is achieved by ensuring that the verifier’s
response “leaks” only a negligible amount of information about the verification state τ (for then malicious
prover strategies that create a significant correlation between τ and the event of the verifier rejecting are
ruled out).12

Security against such provers can be formulated for (computational) soundness or proof of knowledge,
both in the non-adaptive and adaptive settings. Because in this paper we are typically interested in adaptive
proof of knowledge, we formulate it in this setting.

Definition C.1. A triple of algorithms (G,P, V) is a multi-theorem SNARK for the relationR ⊆ RU if it
is a SNARK for R where adaptive proof of knowledge (Definition 4.3) is replaced by the following stronger
requirement:

• Multi-theorem adaptive proof of knowledge

For every polynomial-size prover P ∗, there exists a polynomial-size extractor E such that for every
large enough security parameter λ ∈ N, auxiliary input z ∈ {0, 1}poly(λ), and time bound T ∈ N,

Pr

 V (τ, y, π) = 1
(y, w) /∈ R

∣∣∣∣∣∣
(σ, τ)← G(1λ, T)

(y, π)← P ∗ V (τ,·,·)(z, σ)
w ← E(z, σ)

 ≤ negl(λ) .13

As discussed in Section 1.3.3, the PCP-based (or MIP-based) SNARKs of [DCL08, Mie08, BCCT12,
GLR11, DFH12, BC12] are not multi-theorem SNARKs, because a malicious prover can adaptively learn
the encrypted PCP (or MIP) queries (whose secrecy is crucial for security), just by feeding different proofs to
the verifier and learning his responses. In this paper, some of the designated-verifier preprocessing SNARKs
that we construct satisfy multi-theorem proof of knowledge (under suitable assumptions), and some do not.

Concretely, an interesting property that is satisfied by algebraic LIPs, which we call strong knowledge,
is that such “correlation attacks” are impossible: roughly, every LIP prover either makes the LIP verifier
accept with probability 1 or with probability less than O(poly(λ)/|F|). Designated-verifier preprocessing
SNARKs constructed from such LIPs can thus be shown to have the multi-theorem property. Details follow.

Definition C.2. An LPCP (PLPCP, VLPCP) with knowledge error ε has strong knowledge error if for every
input x and every linear function π∗ : Fm → F, the probability that V π

∗
LPCP(x) accepts is either 1 or at most

ε. (When we are not paying attention to the knowledge properties of the LPCP, we shall call this property
strong soundness.) An analogous definition holds for LIPs.

12Note that O(log λ)-theorem soundness always holds; the “non-trivial” case is whenever ω(log λ). Weaker solutions to support
more theorems include simply assuming that the verifier’s responses remain secret, or re-generating σ every logarithmically-many
rejections, e.g., as in [KR06, GKR08, KR09, GGP10, CKV10].

13One can also consider a weaker variant of Definition C.1 where the extractor, just like the prover, has oracle access to the
proof-verification oracle V (τ, ·, ·). Doing so allows the extractor, for instance, to run the prover.

51

For sufficiently large field F, algebraic LPCPs and LIPs have the strong knowledge error property, as
proved in the following lemma.

Lemma C.3. Let (PLPCP, VLPCP) be an LPCP over F with knowledge error ε; if (PLPCP, VLPCP) has degree
(dQ, dD), then (PLPCP, VLPCP) has strong knowledge error max{ε, dQdD|F| }. An analogous statement holds for
(input-oblivious two-message) LIPs.

Proof. Since (PLPCP, VLPCP) has knowledge error ε, it also has knowledge error max{ε, dQdD|F| }. We are now

only left to show that, for every input x and linear function π∗, if Pr[V π
∗

LPCP(x) = 1] > max{ε, dQdD|F| } ≥
dQdD
|F| then Pr[V π

∗
LPCP(x) = 1] = 1. Indeed, letting tx be the test polynomial, p the state polynomial,

p1, . . . ,pk the query polynomials of VLPCP,

Pr
[
V π

∗
LPCP(x) = 1

]
= Pr
r←Fµ

[
tx
(
p(r), 〈π∗,p1(r)〉 , . . . , 〈π∗,pk(r)〉

)
= 0η

]
= Pr
r←Fµ

[
a(r) = 0η

]
,

where a is the polynomial of degree dQdD defined by a(r) := tx
(
p(r), 〈π∗,p1(r)〉 , . . . , 〈π∗,pk(r)〉

)
.

By the Scwartz–Zippel Lemma (cf. Lemma 2.1), if Pr[V π
∗

LPCP(x) = 1] >
dQdD
|F| then a ≡ 0η and thus

Pr[V π
∗

LPCP(x) = 1] = 1.
A similar argument proves the analogous statement for LIPs.

Do LIPs with strong knowledge exist? In Section 3, we presented two types of LIP constructions.

• Both LIPs constructed in Section 3.1 are algebraic (as they are based on algebraic LPCPs) and hence,
because of Lemma C.3, do enjoy strong knowledge.

• In contrast, the LIPs constructed Section 3.2 are not algebraic and also do not enjoy strong knowledge
(or soundness). The reason is that those LIPs are based on traditional PCPs that do not enjoy strong
knowledge (or soundness).

In fact, we now prove that no (traditional) PCP (for a hard enough language) can enjoy strong soundness,
so that the lack of strong knowledge (or soundness) for the LIPs constructed in Section 3.2 is inherent.
Concretely, we show that if a language L has a (traditional) PCP with strong soundness, then it can be
decided quite easily.

Definition C.4. Let ` : N → N be a function. The complexity class MA(`) is the set of languages L for
which there exists a probabilistic polynomial-time Turing machine M such that, for every instance x,
• if x ∈ L, then there is y ∈ {0, 1}`(|x|) such that Pr[M(x, y) = 1] > 2/3;
• if x 6∈ L, then for every y ∈ {0, 1}`(|x|) it holds that Pr[M(x, y) = 0] > 2/3.

Theorem C.5. Let (PPCP, VPCP) be a k-query PCP with proof lengthm for a language L, where k andm are
functions of the input size. If (PPCP, VPCP) has strong soundness error 1/3, then L ∈ MA(2k(logm+ 1)).

Proof. Because (PPCP, VPCP) has strong soundness error 1/3, for every x and π, either Pr[V π
PCP(x) = 1] = 1

or Pr[V π
PCP(x) = 1] ≤ 1/3. (See Definition 2.2.) It suffices to show that, for every x ∈ L and π such that

Pr[V π
PCP(x) = 1] = 1, there is S ⊆ [m] of size at most 2k for which Pr[V

(π|S ,1|[m]\S)
PCP (x) = 1] = 1, where

(π|S ,1|[m]\S) is the PCP oracle that is the same as π at the locations in S and is equal to 1 at all other
locations. Indeed, to see that the latter is sufficient, consider the MA verifier that, on input x and candidate
witness (S, π|S) ∈ {0, 1}2k(logm+1), runs VPCP with (π|S ,1|[m]\S) and accepts if and only if VPCP does;

52

by the above claim and the completeness of (PPCP, VPCP), for any x ∈ L, there is a witness that makes the
MA verifier accept with probability 1; furthermore, for every x /∈ L, the (strong) soundness of (PPCP, VPCP)
implies that the MA verifier accepts with probability at most 1/3 regardless of the witness.

To prove the aforementioned claim, fix any such x ∈ L and define S ⊆ [m] to be the set of positions
that are queried by VPCP with probability at least 1/2; by averaging |S| ≤ 2k. (While S may depend on x, it
may not depend on the PCP proof.) Let π ∈ {0, 1}m be a PCP oracle for which Pr[V π

PCP(x) = 1] = 1. We

show that also Pr[V
(π|S ,1|[m]\S)
PCP (x) = 1] = 1, or else strong soundness is violated. Indeed, assume towards

contradiction that this is not the case, then by strong soundness Pr[V
(π|S ,1|[m]\S)
PCP (x) = 1] ≤ 1/3. Consider

a sequence of hybrid PCP oracles π0, . . . , πm−|S| defined as follows: starting from π0 = π, we set the bits
outside of S one by one (in any fixed order) to 1, until we get πm−|S| = (π|S ,1|[m]\S). By strong soundness,
there exist i ∈ [m− |S|] such that Pr[V

πi−1
PCP (x) = 1] = 1 and Pr[V πi

PCP(x) = 1] ≤ 1/3. However, πi−1 and
πi only differ on a single position j ∈ [m] \ S that, in particular, is queried with probability at most 1/2,
implying that Pr[V

πi−1
PCP (x) = 1]− Pr[V πi

PCP(x) = 1] ≤ 1/2, leading to a contradiction.

From LIPs with strong knowledge to multi-theorem designated-verifier preprocessing SNARKs. At
high level, the fact that LIPs with strong knowledge make “correlation attacks” impossible gives strong
intuition for why such LIPs should give rise (through our transformation from Section 6.1) to designated-
verifier preprocessing SNARKs with the multi-theorem property.

However, formalizing this intuition seems to require a notion of linear-only encryption that is stronger
than the one introduced in Section 5.1. Specifically, we need to be able to repeatedly extract from a malicious
prover in order to simulate its queries to the proof-verification oracle. Doing so raises difficulties similar
to the case of plaintext-aware encryption (see [BP04a, BP04b]), and seems to be solvable via “interactive
extractability assumptions” [BP04a, BP04b, DFH12].

We now provide a definition of linear-only encryption that, together with strong knowledge, suffices
to obtain multi-theorem SNARKs. We thus obtain a confirmation that using strong knowledge is a “con-
ceptually correct” method serving as a good heuristic towards the construction of multi-theorem SNARKs
(despite the fact that we need to make fairly strong cryptographic assumptions to formalize this step).

Linear-only homomorphism with interactive extraction. A linear-only encryption scheme with interac-
tive extraction is the same as a (standard) linear-only encryption (Definition 5.4), except that it has a stronger
extraction guarantee. Recall that the (standard) linear-only property says that whenever an efficient adver-
sary, given a public key pk and ciphertexts (c1, . . . , cm), produces a ciphertext c′ in the image of Encpk, there
is an efficient extractor that outputs a corresponding affine function “explaining” the ciphertext (or, more
accurately, the underlying plaintext) as an affine combination of (c1, . . . , cm) (or, more accurately, their
underlying plaintexts). While the standard definition only guarantees “one-time” extraction, the interactive
definition gives the adversary the option to interact with the extractor and try to repeatedly sample additional
ciphertexts c′2, c

′
3, . . . given the previously-extracted affine combinations. The definition below is along the

same lines as definitions in [BP04a, BP04b, DFH12].

Definition C.6. An encryption scheme has the linear-only property with interactive extraction if, for any
polynomial-size (interactive) adversary A, there is a polynomial-size (interactive) extractor E such that, for
any sufficiently large λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and any plaintext generatorM, A wins
the following game with negligible probability:

1. Generation step:

• (sk, pk)← Gen(1λ);

53

• (a1, . . . , am)←M(pk);

• (c1, . . . , cm)← (Encpk(a1), . . . ,Encpk(am)).

2. For i ∈ {1, . . . , |A|}:

• (c′i,1, . . . , c
′
i,k)← A(pk, c1, . . . , cm; e1, . . . , ei−1; z);

• ei ← E(pk, c1, . . . , cm; i; z), where ei is either an affine function (Πi, bi) or it is ⊥.

3. A wins if there exists some i ∈ [|A|], such that any one of the following holds:

• The extractor fails to identify that A outputs an invalid cipher. Namely, there exists j ∈ [k] such
that ImVersk(c

′
i,j) 6= 1 and ei 6= ⊥.

• The extractor fails to produce an affine function that explains the ciphertext produced by A.
Namely, there exists j ∈ [k] such that ImVersk(c

′
i,j) = 1 and one of the following conditions

hold: (1) ei = ⊥, or (ii) Decsk(c′i,j) 6= a′j where ei = (Πi, bi) 6= ⊥ and (a′i,1, . . . , a
′
i,k)
> ←

Πi · (a1, . . . , am)> + bi.

Remark C.7 (instantiations). While Definition C.6 seems stronger than Definition 5.4, all the instantiations
described in Section 5.3 are plausible candidates for satisfying it. (In particular, [BP04a, BP04b, DFH12]
considered “knowledge of exponent assumptions” satisfying a similar requirement.)

We now show that in Lemma 6.2, provided that the linear-only encryption satisfies Definition C.6 and
the LIP has strong knowledge error, we obtain a multi-theorem SNARK (again through Construction 6.1).

Lemma C.8. Suppose that the LIP (PLIP, VLIP) has strong knowledge error poly(λ)/|F| and E is a linear-
only encryption scheme with interactive extraction (Definition C.6). Then, (G,P, V) from Construction 6.1
is a multi-theorem designated-verifier preprocessing SNARK.

Proof sketch. We show that any polynomial-size adversary A that can access the proof-verification oracle
V (τ, ·, ·) can be transformed into a new polynomial-size adversary A′ that cannot access V (τ, ·, ·) such that,
except with negligible probability, the output of A′ is equal to the (final) output of A. The lemma then
follows from Lemma 6.2.

First, we use A to define a new interactive adversary IA that (following the template of Definition C.6)
works as follows. Given a public key pk and ciphertexts (c1, . . . , cm), IA runs A and simulates the proof-
verification oracle V (τ, ·, ·) for A. Specifically, when A outputs the first query (y1, π1) to V (τ, ·, ·), IA
proceeds as follows:

1. IA outputs the tuple of ciphers π1 and then receives e1 from the extractor;

2. if e1 = ⊥, IA answers A’s query (y1, π1) with 0;

3. otherwise, ei is an affine function (Π1, b1), and IA runs the LIP verification procedure using fresh
coins; namely, it samples (u, q)← QLIP, computes d1 = DLIP(u,Π1 ·q>+ b1), and then answers A’s
query (y1, π1) with d1. (Note that u is sampled independently of the state contained in the verification
state τ , which is unknown to IA.)

54

Then, IA continues to run A, each time simulating the answers of V (τ, ·, ·) the same way it simulated its
first answer. Finally, when A produces its final output (yf , πf), IA also outputs (yf , πf). By the interactive
extraction guarantee (see Definition C.6), IA has a corresponding polynomial-size extractor E such that,
when IA and E play the extraction game, IA wins with negligible probability.14

Next, we use IA and E to define a new (non-interactive) adversary A′ that works as follows. Given a
public key pk and ciphertexts (c1, . . . , cm), A′ runs the extraction game between IA and E, and then outputs
the final output (yf , πf) of IA. Note that A′ does not require access to V (τ, ·, ·).

We claim that, except with negligible probability, the output of A′ is equal to the (final) output of A. To
show this, it suffices to argue that, except with negligible probability, the answers provided by IA to A and
those provided by V (τ, ·, ·) are equal. And indeed:

• Whenever A makes a query (yi, πi) where πi contains a ciphertext c′ such that ImVersk(c
′) 6= 1,

V (τ, ·, ·) returns 0. In such a case, the extractor E outputs ⊥, and so IA answers A’s query with 0.

• For any other query (yi, πi) of A, except with negligible probability, E outputs (Πi, bi) that explains
A’s output; i.e., Decsk(c′i,j) = a′j for all j ∈ [k], where (a′i,1, . . . , a

′
i,k)
> ← Πi · (a1, . . . , am)> + bi.

We now consider two cases.

The first case is where (Πi, bi) convinces the LIP verifier with probability 1; in this case, both V (τ, ·, ·)
and IA return 1.

The second case is where (Πi, bi) does not always convince the LIP verifier; in particular, by the
strong knowledge guarantee, (Πi, bi) convinces the LIP verifier with only negligible probability. We
argue that, in this case, except with negligible probability, both V (τ, ·, ·) and IA return 0. This clearly
holds for IA, because it samples fresh queries and state from QLIP. The fact that this is also the case
for V (τ, ·, ·) follows from semantic security. For, if this were not the case, IA and E could be used to
produce an affine function that causes V (τ, ·, ·) to accept and yet does not satisfy all but a negligible
fraction of (u, q) ∈ QLIP; this would allow to efficiently distinguish this encrypted LIP query from an
encrypted random LIP query.

The proof sketch of the lemma is now complete.

14More precisely, we should invoke the interactive extraction guarantee on the interactive adversary I ′A that is equal to IA except
that it outputs only πf instead of (yf , πf).

55

References
[ABOR00] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Fast verification of any

remote procedure call: Short witness-indistinguishable one-round proofs for NP. In Proceedings of the 27th Inter-
national Colloquium on Automata, Languages and Programming, ICALP ’00, pages 463–474, 2000.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Proceedings of the 4th Theory of Cryp-
tography Conference, TCC ’07, pages 118–136, 2007.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification via secure
computation. In Proceedings of the 37th International Colloquium on Automata, Languages and Programming,
ICALP ’10, pages 152–163, 2010.

[ALM+98a] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS ’92.

[ALM+98b] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS ’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the
ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings. In
Proceedings on 9th Annual ACM Symposium on Theory of Computing, STOC ’77, pages 30–41, 1977.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs and their efficiency
benefits. In Proceedings of the 32nd Annual International Cryptology Conference, CRYPTO ’12, pages 255–272,
2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal of Com-
puter and System Sciences, 37(2):156–189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for
SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 111–120, 2013.

[Ben94] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on Selected Areas of Cryptography,
pages 120–128, 1994.

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation, 24(111):713–735,
1970.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic
time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal on Computing,
38(5):1661–1694, 2008. Preliminary version appeared in CCC ’02.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computation over large datasets.
In Proceedings of the 31st Annual International Cryptology Conference, CRYPTO ’11, pages 111–131, 2011.

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Information
Processing Letters, 25(2):127–132, 1987.

[BO81] Michael Ben-Or. Probabilistic algorithms in finite fields. In Proceedings of the 22nd Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’81, pages 394–398, 1981.

[BP04a] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols.
In Proceedings of the 24th Annual International Cryptology Conference, CRYPTO ’04, pages 273–289, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without random oracles. In
Proceedings of the 10th International Conference on the Theory and Application of Cryptology and Information
Security, ASIACRYPT ’04, pages 48–62, 2004.

56

[BSCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, ITCS ’13, pages 401–414, 2013.

[BSCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of probabilistically-
checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, 2013.

[BSGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust PCPs of proximity,
shorter PCPs and applications to coding. In Proceedings of the 26th Annual ACM Symposium on Theory of Comput-
ing, STOC ’04, pages 1–10, 2004.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs verifiable in
polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC ’05,
pages 120–134, 2005.

[BSHLM09] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-query PCPPs are long. ACM Trans-
actions on Computation Theory, 1(2):7:1–7:49, 2009. Preliminary version appeared in ICALP ’08.

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on Computing,
38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BSSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low degree tests and short
PCPs via epsilon-biased sets. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC
’03, pages 612–621, 2003.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic encryption for restricted computa-
tions. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 350–366,
2012.

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In Proceedings of the 48th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages 41–51, 2007.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS ’11, 2011.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using fully homomorphic
encryption. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages 483–501,
2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming inter-
active proofs. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
90–112, 2012.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of the 4th
Annual ACM Symposium on Theory of Computing, STOC ’72, pages 73–80, 1972.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two 1-round protocols for delegation of computation. Cryptology
ePrint Archive, Report 2011/518, 2011.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive proofs. Proceedings
of the VLDB Endowment, 5(1):25–36, 2011.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields. Mathematics
of Computation, 36(154):587–592, 1981.

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Proceedings of the
11th Annual International Cryptology Conference, CRYPTO ’92, pages 445–456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability assumption. In Proceedings
of the 4th Conference on Computability in Europe, CiE ’08, pages 175–185, 2008.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communication. In
Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pages 54–74, 2012.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low communication 2-prover zero-
knowledge proofs for NP. In Proceedings of the 11th Annual International Cryptology Conference, CRYPTO ’92,
pages 215–227, 1992.

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial sources. Computational
Complexity, 18(1):1–58, 2009.

57

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold. Succinct NP proofs and spooky
interactions, December 2004. Available at www.openu.ac.il/home/mikel/papers/spooky.ps.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985.

[FG12] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with
applications. Cryptology ePrint Archive, Report 2012/281, 2012.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the hardness
of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. Preliminary version in FOCS ’91.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems. In
Proceedings of the 6th Annual International Cryptology Conference, CRYPTO ’87, pages 186–194, 1987.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: outsourcing computation
to untrusted workers. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages
465–482, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Proceedings of the 32nd Annual International Conference on Theory and Application of Crypto-
graphic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded communication. Informa-
tion Processing Letters, 67(4):205–214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for
Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122,
2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejection problem from
designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456, 2011.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 407–418, 2005.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 321–
340, 2010.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length. Journal of the ACM,
53:558–655, July 2006. Preliminary version in STOC ’02.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover. Computational
Complexity, 11(1/2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11, pages 99–108, 2011.

[HK05] Johan Håstad and Subhash Khot. Query efficient PCPs with perfect completeness. Theory of Computing, 1(1):119–
148, 2005.

[HS00] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computational Complexity, 9(3–
4):157–201, Dec 2000. Preliminary version in STACS ’91.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In Proceedings of the
18th Annual International Cryptology Conference, CRYPTO ’98, pages 408–423, 1998.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs. In Proceedings of the
Twenty-Second Annual IEEE Conference on Computational Complexity, CCC ’07, pages 278–291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

58

www.openu.ac.il/home/mikel/papers/spooky.ps

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with preprocessing for LOGSNP.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 355–366, 2006.

[KR08] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, ICALP ’08, pages 536–547, 2008.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of the 29th Annual Inter-
national Cryptology Conference, CCC ’09, pages 143–159, 2009.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pages 169–189, 2012.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In Pro-
ceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’10, pages 1–23, 2010.

[Mei12] Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual IEEE Conference on Computa-
tional Complexity, CCC ’12, 2012.

[MH78] Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Transac-
tions on Information Theory, 24(5):525–530, Sep 1978.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology, 2(4):343–363,
2008.

[MR08] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM, 57:1–29, June 2008.
Preliminary version appeared in FOCS ’08.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual International Cryp-
tology Conference, CRYPTO ’03, pages 96–109, 2003.

[NN90] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and applications. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90, pages 213–223, 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the
17th International Conference On Theory And Application Of Cryptographic Techniques, EUROCRYPT ’99, pages
223–238, 1999.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from a Weil descent. In Proceed-
ings of the 18th International Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT ’12, 2012.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, STOC ’94, pages 194–203, 1994.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, STOC ’05, pages 84–93, 2005.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Proceedings of the 8th Theory of
Cryptography Conference, TCC ’11, pages 219–234, 2011.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability
PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 475–484, 1997.

[SBV+12] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish. Resolving the
conflict between generality and plausibility in verified computation. Cryptology ePrint Archive, Report 2012/622,
2012.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification of remote
computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS ’13,
pages 29–29, 2011.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for
outsourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed System Security
Symposium, NDSS ’12, pages ???–???, 2012.

59

[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. Taking
proof-based verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX Security
Symposium, Security ’12, pages 253–268, 2012.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical Foundations of Computer
Science, volume 53 of Lecture Notes in Computer Science, pages 162–176. 1977.

[VZGP01] Joachim Von Zur Gathen and Daniel Panario. Factoring polynomials over finite fields: a survey. Journal of Symbolic
Computation, 31(1-2):3–17, Jan 2001.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming, ICALP ’05, pages 140–152, 2005.

60

	Introduction
	Background
	Motivation
	Our Results
	Structured PCPs In Other Works
	Organization

	Definitions of LIP s and LPCP s
	Polynomials, Degrees, and Schwartz–Zippel
	Linear PCP s
	Linear Interactive Proofs

	Constructions of LIP s
	LIP s From LPCP s
	LIP s From (Traditional) PCP s

	Definitions of SNARK s and Preprocessing SNARK s
	Preprocessing SNARK s for Boolean Circuit Satisfaction Problems

	Linear-Only Encryption and Encodings
	Linear-Only Encryption
	Linear-Only One-Way Encoding
	Instantiations

	Preprocessing SNARK s from LIP s
	Designated-Verifier Preprocessing SNARK s from Arbitrary LIP s
	Publicly-Verifiable Preprocessing SNARK s from Algebraic LIP s
	Resulting Preprocessing SNARK s

	Acknowledgements
	Two LPCP s For Boolean Circuit Satisfaction Problems
	An LPCP From The Hadamard Code
	An LPCP From Quadratic Span Programs

	HVZK For LPCP s With Low-Degree Decision Algorithm
	Multi-Theorem Designated-Verifier SNARK s via Strong Knowledge
	References

